- 你了解TikTok的矩阵玩法吗?这一策略能帮助你实现精准引流!
m0_74891046
矩阵
TikTok已经不再是一个单纯的娱乐平台,它逐渐成为了很多人商业变现的利器。今天,咱们来聊聊TikTok矩阵玩法,看看如何利用多个账号协同作战,实现精准的引流和推广。什么是TikTok矩阵玩法?矩阵玩法是一种通过多个TikTok账号配合运营,进行内容推广和流量引导的策略。通过精细化分工和协同作战,每个账号都有不同的目标和任务,从而实现更高效的流量转化和用户增长。矩阵玩法的优势:精准引流每个账号针对
- API身份验证使用JWT的.NET实现
雨夜思绪~静谧思考
.net
API身份验证使用JWT的.NET实现在现代的应用程序开发中,API身份验证是一项至关重要的任务。JWT(JSONWebToken)是一种常用的身份验证机制,它使用JSON格式表示身份验证信息,并使用签名进行验证。在.NET平台上,我们可以使用一些库来实现JWT身份验证。本文将介绍如何使用.NET来进行API身份验证并使用JWT作为身份验证机制。引入依赖项首先,我们需要在我们的项目中引入相关的依赖
- 灵犀X2:人形机器人的新篇章
Anima.AI
机器人
简介灵犀X2是智元机器人推出的最新款人形机器人,很可能是其前代产品灵犀X1的升级版本。灵犀X1作为一款开源的模块化机器人,其机械设计和软件代码完全公开,全球开发者都可以参与优化和创新。这款机器人身高130厘米,体重33公斤,具备34到44个自由度(DegreesofFreedom,DoF,即关节活动范围),能够执行轻型任务,如端茶送水、整理房间等。灵犀X2在继承这些特性的基础上,可能进一步提升了动
- 机器学习实战——音乐流派分类(主页有源码)
喵了个AI
机器学习实战机器学习分类人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.简介音乐流派分类是音乐信息检索(MusicInformationRetrieval,MIR)中的一个重要任务,旨在通过分析音频信号的特征,将音乐自动分类到不同的流派(如古典、摇滚、爵士、流行等)。随着数字音乐平台的普及,音乐流派分类技术被广泛应用于音乐推荐、自动标签生成和音乐库管理
- 2.10 Spring Boot定时任务:@Scheduled与Quartz对比分析
Sendingab
springboot后端java
SpringBoot定时任务:@Scheduled与Quartz对比分析一、核心特性对比特性**@Scheduled**Quartz依赖复杂度内置于Spring(零配置)需额外依赖与配置任务持久化不支持(内存存储)支持(数据库持久化)动态任务管理仅静态配置支持运行时增删改查分布式支持需自行实现原生集群支持调度策略固定速率/延迟Cron表达式/日历触发错误处理简单异常捕获完善的重试与错误日志机制性能
- Python:每日一题之错误票据
努力的敲码工
蓝桥杯每日一题python蓝桥杯
题目描述某涉密单位下发了某种票据,并要在年终全部收回。每张票据有唯一的ID号。全年所有票据的ID号是连续的,但ID的开始数码是随机选定的。因为工作人员疏忽,在录入ID号的时候发生了一处错误,造成了某个ID断号,另外一个ID重号。你的任务是通过编程,找出断号的ID和重号的ID。假设断号不可能发生在最大和最小号。输入描述输入描述要求程序首先输入一个整数N(N<100)表示后面数据行数。接着读入N行数据
- SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
摘要深度学习的最新进展给地震监测带来了革命性变化,但开发一个能在多个复杂任务中表现出色的基础模型仍然充满挑战,尤其是在处理信号退化或数据稀缺的情况时。本文提出SeisMoLLM,这是首个利用跨模态迁移进行地震监测的基础模型,它无需在地震数据集上进行直接预训练,就能充分发挥大规模预训练大语言模型的强大能力。通过精心设计的波形标记化处理和对预训练GPT-2模型的微调,SeisMoLLM在DiTing和
- Linux 提权
藤原千花的败北
权限提升网络安全linux运维网络安全
文章目录前言1.内核漏洞提权脏牛(CVE-2016-5195)2.不安全的系统配置项2.1SUID/SGID提权2.2sudo提权2.3定时任务提权2.4capabilities提权3.第三方软件提权TomcatmanagerNginx本地提权(CVE-2016-1247)Redis未授权4.参考前言Linux提权总结1.内核漏洞提权内核管理着组件(如系统上的内存)和应用程序之间的通信。这个关键作
- 【Hugging Face】transformers 库中 model 的常用方法和属性
彬彬侠
HuggingFacemodel模型的属性和方法transformersHuggingFacepython
HuggingFacetransformers库中model的常用方法和属性在transformers库中,model代表预训练的Transformer模型,可用于文本分类、问答、文本生成等任务。不同任务的model可能会有不同的方法和属性,但它们共享许多常见功能。1.model的常见属性在加载AutoModel或AutoModelForXXX后,可以使用以下属性:fromtransformers
- 目标检测项目
sho_re
神经网络人工智能pytorch目标检测
·识别图片中有哪些物体并且找到物体的存在位置多任务:位置+类别目标种类与数量繁多的问题目标尺度不均的问题遮挡、噪声等外部环境干扰VOC数据集:PASCALVOC挑战赛(ThePASCALVisualObjectClasses)是一个世界级的计算机视觉挑战赛。4大类,20小类VOC2007:9963图片/24640目标VOC2012:23080图片/54900目标·COCO数据集:起源于微软2014
- HarmonyNext实战:基于ArkTS的分布式数据同步应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的分布式数据同步应用开发引言在HarmonyNext生态系统中,分布式数据同步是一个核心功能,它允许设备之间无缝共享和同步数据。本文将深入探讨如何使用ArkTS构建一个高性能的分布式数据同步应用,涵盖从数据模型设计到分布式同步策略的完整开发流程。我们将通过一个实际的案例——实现一个跨设备的任务管理应用,来展示ArkTS在HarmonyNext平台上的强大能
- HarmonyNext实战:基于ArkTS的分布式数据同步应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的分布式数据同步应用开发引言在HarmonyNext生态系统中,分布式数据同步是一个核心特性,它允许设备之间无缝共享和同步数据。本文将深入探讨如何利用ArkTS语言开发一个高性能的分布式数据同步应用,涵盖从基础数据存储到跨设备同步的完整流程。我们将通过一个实战案例,详细讲解如何实现一个支持多设备数据同步的任务管理应用,并确保其性能优化。1.环境准备与项目初
- PyTorch实现CNN:CIFAR-10图像分类实战教程
吴师兄大模型
PyTorchpytorchcnnCIFAR-10图像分类人工智能python卷积神经网络开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 关于两次项目的学习感悟
罗婕斯特
大数据
经过这两次项目,我学到了以下几点:1.模块化与结构化思维:代码展示了如何将深度学习任务分解为多个模块(如数据加载、模型定义、训练循环、评估等)。这种模块化的思维方式不仅适用于编程,也可以应用于解决复杂问题时的结构化思考。2.细节决定成败:代码中涉及了许多细节,如数据预处理、学习率调整、损失函数的选择等。这些细节对模型的最终性能有着重要影响。这提醒我们,在解决实际问题时,细节往往决定成败,需要耐心和
- 探索R语言:经典案例解析与源代码
翠绿探寻
r语言信息可视化开发语言R语言
探索R语言:经典案例解析与源代码引言:R语言是一种流行的数据分析和统计建模工具,具有丰富的功能和广泛的应用领域。在本文中,我们将通过经典案例来探索R语言的一些重要功能和技术。我们将提供相应的源代码,以便读者能够实际运行并理解这些示例。案例一:数据导入与处理在数据分析中,数据导入和处理是首要任务。R语言提供了丰富的函数和包,用于处理各种数据格式。下面是一个简单的示例,演示了如何导入和处理CSV格式的
- Manus演示案例: 英伟达财务估值建模 解锁投资洞察的深度剖析
ylfhpy
Manus深度学习人工智能机器学习机器翻译Manus
在当今瞬息万变的金融投资领域,精准剖析企业价值是投资者决胜市场的关键。英伟达(NVIDIA),作为科技行业的耀眼明星,其在人工智能和半导体领域的卓越表现备受瞩目。Manus凭借专业的财务估值建模能力,深入挖掘英伟达的潜在价值,为投资者提供了一份极具价值的分析报告。Manus在接到为英伟达进行详细财务估值建模的任务后,迅速且有条不紊地开展工作。数据收集是建模的基石,其重要性不言而喻。在收集英伟达公司
- Ansible集成Git的CI/CD流水线详解
wespten
Linux自动化运维智能运维性能监控系统调优TSansibleci/cd
Ansible是一款强大且易用的自动化工具,从简单的任务到复杂的多环境部署,Ansible提供了丰富的功能和灵活性。通过编写结构良好、易于维护的剧本,可以显著提高IT任务的效率和可靠性。将Ansible集成到CI/CD流程中,可以实现自动化的应用部署和测试。常见的集成方式包括:Jenkins:通过Jenkins插件或Pipeline,执行Ansible剧本进行部署。GitLabCI/CD:在Git
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- “大语言模型微调”(Fine-tuning)与“大语言模型应用”(LLM Applications)之间的区别
AI Echoes
人工智能机器学习深度学习
1.概念与定义大语言模型微调微调指的是在一个经过大规模预训练的通用语言模型基础上,利用针对性较强的小规模数据集对模型进行进一步训练,从而使模型在特定领域或任务上表现得更优秀。目标:使模型更好地适应特定任务(如医疗问答、法律咨询、编程辅助等),提高准确性和专业性。方法:可以是全参数微调,也可以采用参数高效微调(如LoRA、Adapter、PrefixTuning等),后者只调整部分参数而保持原有权重
- 全面掌握C#多线程编程:核心机制、高级技巧与性能调优
Ro小陌
C#Java开发语言c#java开发语言
在C#中,多线程编程的深度解析需要从底层机制、运行时行为、同步原语和最佳实践等多个维度展开。以下是更深入的技术解析:一、线程与操作系统内核的交互1.线程的底层实现用户模式线程(User-ModeThreads):由CLR管理,轻量级但无法利用多核,依赖协作式调度(如async/await中的状态机)。内核模式线程(Kernel-ModeThreads):由操作系统调度,支持抢占式多任务,每个C#T
- Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务
AGI大模型与大数据研究院
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务1.背景介绍1.1问题的由来翻译是跨语言沟通的重要桥梁,随着全球化进程的加速,翻译需求日益增长。传统的机器翻译方法主要依赖于规则和统计方法,如基于短语的翻译、基于统计的机器翻译等。然而,这些方法难以处理复杂的语言现象,翻译质量参差不齐。近年来,随着深度学习技术的快速发展,基于神经网络序列到序列(Sequence-to-Seq
- 21天学会FREERTOS专栏(1)--FreeRTOS概述
xiaoheshang_123
freertos
目录第1天:FreeRTOS概述1.什么是RTOS?2.FreeRTOS的特点和优势3.FreeRTOS的历史和发展4.FreeRTOS的应用场景5.为什么选择FreeRTOS?6.小结作业第1天:FreeRTOS概述1.什么是RTOS?RTOS(Real-TimeOperatingSystem)是一种实时操作系统,它的主要特点是能够在确定的时间内响应外部事件或内部事件,并完成相应的处理任务。与通
- 一学就会的深度学习基础指令及操作步骤(6)迁移学习
小圆圆666
深度学习迁移学习人工智能卷积神经网络
文章目录迁移学习模型准备数据增强模型训练模型微调和预测检查预测结果迁移学习迁移学习是将一个任务中学到的知识应用到另一个相关任务上,以提高新任务的学习效率和性能。优势:节省训练时间,提高模型性能,尤其在小数据场景下效果显著。核心是利用源域的知识来帮助目标域任务,比如在ImageNet上预训练的模型用于医疗影像分类。源域(SourceDomain):已有知识的领域(如ImageNet图像库)。目标域(
- D3D11的简单字体
x-2010
DIRECT3DD3D字体实现
本篇的任务是要先学会混合和纹理才能够做到的。这儿有几种方法能够在D3D11中实现字体显示,一个是学会使用微软想要我们使用的两个新的API,Direct2D和DirectWrite,实际上它们是很有用处的,暂不提它们的灵活性(除了不能够直接使用D3D11设备之外),它的缺点就是由于不能够直接在D3D11中使用,需要在D3D10.1的设备中使用,导致在渲染时需要在这两种设备之间切换。本篇是在混合篇基础
- 领域大模型之微调技术和最佳实践
程序员莫玛
人工智能深度学习语言模型金融
BERT和GPT-3等语言模型针对语言任务进行了预训练。微调使它们适应特定领域,如营销、医疗保健、金融。在本指南中,您将了解LLM架构、微调过程以及如何为NLP任务微调自己的预训练模型。-介绍-大型语言模型(LLM)的特别之处可以概括为两个关键词——大型和通用。“大”是指它们训练的海量数据集及其参数的大小,即模型在训练过程中学习的记忆和知识;“通用”意味着他们具有广泛的语言任务能力。更明确地说,L
- 《Windows命令提示符(CMD)函数全解析与应用研究》
Small踢倒coffee_氕氘氚
经验分享笔记
##摘要本文深入探讨了Windows命令提示符(CMD)的核心功能和应用。文章详细解析了CMD的基本命令、批处理脚本编写技巧以及高级功能,包括网络命令、系统管理命令和磁盘管理命令。通过实际案例研究,展示了CMD在系统管理、网络配置和自动化任务中的广泛应用。研究表明,CMD作为Windows系统的重要工具,在提高工作效率和系统管理能力方面具有显著优势。本文旨在为读者提供全面的CMD使用指南,帮助其更
- FreeRTOS概述
2401_85904908
单片机arm开发stm32
文章目录核心文件头文件内存管理文件入口函数数据类型前缀核心文件最核心文件:task.c和list.c文件作用tasks.c必需,任务操作list.c必须,列表queue.c基本必需,提供队列操作、信号量(semaphore)操作timer.c可选,softwaretimerevent_groups.c可选,提供eventgroup功能croutine.c可选,过时了头文件头文件作用FreeRTOS
- 我与DeepSeek的深度实践:重新定义智能编程的边界
一叶孤舟111
python人工智能
引言:从质疑到依赖的认知跃迁在ChatGPT掀起AI编程革命之初,我曾对代码生成工具持保留态度。直到2023年接触DeepSeek,这个来自中国的AI编程助手彻底改变了我的开发模式。经过200+小时的深度使用,我在实际项目中验证了其惊人潜力,本文将分享最具实践价值的经验总结。一、效率革命:实测数据背后的生产力跃升1.1代码生成效率对比任务类型传统耗时DeepSeek耗时准确率CRUD接口开发2.5
- 如何对大模型进行微调?从原理到实战全解析
挣扎与觉醒中的技术人
人工智能外包转型集成学习chatgptgpt-3软件工程
随着大语言模型(LLM)的快速发展,微调(Fine-tuning)已成为将通用模型转化为垂直领域专家的核心技术。本文将从原理、方法到实战步骤,结合OpenAI、HuggingFace等平台的最佳实践,详解大模型微调全流程。文末附赠独家资料包,助你快速上手!一、什么是大模型微调?微调指在预训练大模型(如GPT-3.5、LLaMA)的基础上,使用特定领域的数据进行二次训练,使模型适应新任务或领域需求。
- XGBClassifiler函数介绍
浊酒南街
#算法机器学习XGB
目录前言函数介绍示例前言XGBClassifier是XGBoost库中用于分类任务的类。XGBoost是一种高效且灵活的梯度提升决策树(GBDT)实现,它在多种机器学习竞赛中表现出色,尤其擅长处理表格数据。函数介绍XGBClassifiler(max_depth=3,learning_rate=0.1,n_estimators=100,objective='binary:logistic',boo
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S