映射

映射

存储(键,值)数据对的数据结构(key,value)
根据键(key),寻找值(value)
可以使用链表或者二分搜索树实现

使用链表实现映射

定义Map的接口:
void add(K key, V value);
V remove(K key);
boolean contains(K key);
V get(K key);
void set(K key, V newValue);
int getSize();
boolean isEmpty();

LinkedListMap.java

public class LinkedListMap implements Map {

    private class Node{
        public K key;
        public V value;
        public Node next;

        public Node(K key, V value, Node next){
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public Node(K key, V value){
            this(key, value, null);
        }

        public Node(){
            this(null, null, null);
        }

        @Override
        public String toString(){
            return key.toString() + " : " + value.toString();
        }
    }

    private Node dummyHead;
    private int size;

    public LinkedListMap(){
        dummyHead = new Node();
        size = 0;
    }

    @Override
    public int getSize(){
        return size;
    }

    @Override
    public boolean isEmpty(){
        return size == 0;
    }

    private Node getNode(K key){
        Node cur = dummyHead.next;
        while(cur != null){
            if(cur.key.equals(key))
                return cur;
            cur = cur.next;
        }
        return null;
    }

    @Override
    public boolean contains(K key){
        return getNode(key) != null;
    }

    @Override
    public V get(K key){
        Node node = getNode(key);
        return node == null ? null : node.value;
    }

    @Override
    public void add(K key, V value){
        Node node = getNode(key);
        if(node == null){
            dummyHead.next = new Node(key, value, dummyHead.next);
            size ++;
        }
        else
            node.value = value;
    }

    @Override
    public void set(K key, V newValue){
        Node node = getNode(key);
        if(node == null)
            throw new IllegalArgumentException(key + " doesn't exist!");

        node.value = newValue;
    }

    @Override
    public V remove(K key){

        Node prev = dummyHead;
        while(prev.next != null){
            if(prev.next.key.equals(key))
                break;
            prev = prev.next;
        }

        if(prev.next != null){
            Node delNode = prev.next;
            prev.next = delNode.next;
            delNode.next = null;
            size --;
            return delNode.value;
        }

        return null;
    }

    public static void main(String[] args){

        System.out.println("Pride and Prejudice");

        ArrayList words = new ArrayList<>();
        if(FileOperation.readFile("pride-and-prejudice.txt", words)) {
            System.out.println("Total words: " + words.size());

            LinkedListMap map = new LinkedListMap<>();
            for (String word : words) {
                if (map.contains(word))
                    map.set(word, map.get(word) + 1);
                else
                    map.add(word, 1);
            }

            System.out.println("Total different words: " + map.getSize());
            System.out.println("Frequency of PRIDE: " + map.get("pride"));
            System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
        }

        System.out.println();
    }
}

fileOperation.java

public class FileOperation {

    // 读取文件名称为filename中的内容,并将其中包含的所有词语放进words中
    public static boolean readFile(String filename, ArrayList words){

        if (filename == null || words == null){
            System.out.println("filename is null or words is null");
            return false;
        }

        // 文件读取
        Scanner scanner;

        try {
            File file = new File(filename);
            if(file.exists()){
                FileInputStream fis = new FileInputStream(file);
                scanner = new Scanner(new BufferedInputStream(fis), "UTF-8");
                scanner.useLocale(Locale.ENGLISH);
            }
            else
                return false;
        }
        catch(IOException ioe){
            System.out.println("Cannot open " + filename);
            return false;
        }

        // 简单分词
        // 这个分词方式相对简陋, 没有考虑很多文本处理中的特殊问题
        // 在这里只做demo展示用
        if (scanner.hasNextLine()) {

            String contents = scanner.useDelimiter("\\A").next();

            int start = firstCharacterIndex(contents, 0);
            for (int i = start + 1; i <= contents.length(); )
                if (i == contents.length() || !Character.isLetter(contents.charAt(i))) {
                    String word = contents.substring(start, i).toLowerCase();
                    words.add(word);
                    start = firstCharacterIndex(contents, i);
                    i = start + 1;
                } else
                    i++;
        }

        return true;
    }

    // 寻找字符串s中,从start的位置开始的第一个字母字符的位置
    private static int firstCharacterIndex(String s, int start){

        for( int i = start ; i < s.length() ; i ++ )
            if( Character.isLetter(s.charAt(i)) )
                return i;
        return s.length();
    }
}

使用二分搜索树实现Map

BSTMap.java

public class BSTMap, V> implements Map {

    private class Node{
        public K key;
        public V value;
        public Node left, right;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            left = null;
            right = null;
        }
    }

    private Node root;
    private int size;

    public BSTMap(){
        root = null;
        size = 0;
    }

    @Override
    public int getSize(){
        return size;
    }

    @Override
    public boolean isEmpty(){
        return size == 0;
    }

    // 向二分搜索树中添加新的元素(key, value)
    @Override
    public void add(K key, V value){
        root = add(root, key, value);
    }

    // 向以node为根的二分搜索树中插入元素(key, value),递归算法
    // 返回插入新节点后二分搜索树的根
    private Node add(Node node, K key, V value){

        if(node == null){
            size ++;
            return new Node(key, value);
        }

        if(key.compareTo(node.key) < 0)
            node.left = add(node.left, key, value);
        else if(key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else // key.compareTo(node.key) == 0
            node.value = value;

        return node;
    }

    // 返回以node为根节点的二分搜索树中,key所在的节点
    private Node getNode(Node node, K key){

        if(node == null)
            return null;

        if(key.equals(node.key))
            return node;
        else if(key.compareTo(node.key) < 0)
            return getNode(node.left, key);
        else // if(key.compareTo(node.key) > 0)
            return getNode(node.right, key);
    }

    @Override
    public boolean contains(K key){
        return getNode(root, key) != null;
    }

    @Override
    public V get(K key){

        Node node = getNode(root, key);
        return node == null ? null : node.value;
    }

    @Override
    public void set(K key, V newValue){
        Node node = getNode(root, key);
        if(node == null)
            throw new IllegalArgumentException(key + " doesn't exist!");

        node.value = newValue;
    }

    // 返回以node为根的二分搜索树的最小值所在的节点
    private Node minimum(Node node){
        if(node.left == null)
            return node;
        return minimum(node.left);
    }

    // 删除掉以node为根的二分搜索树中的最小节点
    // 返回删除节点后新的二分搜索树的根
    private Node removeMin(Node node){

        if(node.left == null){
            Node rightNode = node.right;
            node.right = null;
            size --;
            return rightNode;
        }

        node.left = removeMin(node.left);
        return node;
    }

    // 从二分搜索树中删除键为key的节点
    @Override
    public V remove(K key){

        Node node = getNode(root, key);
        if(node != null){
            root = remove(root, key);
            return node.value;
        }
        return null;
    }

    private Node remove(Node node, K key){

        if( node == null )
            return null;

        if( key.compareTo(node.key) < 0 ){
            node.left = remove(node.left , key);
            return node;
        }
        else if(key.compareTo(node.key) > 0 ){
            node.right = remove(node.right, key);
            return node;
        }
        else{   // key.compareTo(node.key) == 0

            // 待删除节点左子树为空的情况
            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                return rightNode;
            }

            // 待删除节点右子树为空的情况
            if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                return leftNode;
            }

            // 待删除节点左右子树均不为空的情况

            // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
            // 用这个节点顶替待删除节点的位置
            Node successor = minimum(node.right);
            successor.right = removeMin(node.right);
            successor.left = node.left;

            node.left = node.right = null;

            return successor;
        }
    }

    public static void main(String[] args){

        System.out.println("Pride and Prejudice");

        ArrayList words = new ArrayList<>();
        if(FileOperation.readFile("pride-and-prejudice.txt", words)) {
            System.out.println("Total words: " + words.size());

            BSTMap map = new BSTMap<>();
            for (String word : words) {
                if (map.contains(word))
                    map.set(word, map.get(word) + 1);
                else
                    map.add(word, 1);
            }

            System.out.println("Total different words: " + map.getSize());
            System.out.println("Frequency of PRIDE: " + map.get("pride"));
            System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
        }

        System.out.println();
    }
}

使用链表和二分搜索树实现map性能分析

测试代码:
Main.java

public class Main {

    private static double testMap(Map map, String filename){

        long startTime = System.nanoTime();

        System.out.println(filename);
        ArrayList words = new ArrayList<>();
        if(FileOperation.readFile(filename, words)) {
            System.out.println("Total words: " + words.size());

            for (String word : words){
                if(map.contains(word))
                    map.set(word, map.get(word) + 1);
                else
                    map.add(word, 1);
            }

            System.out.println("Total different words: " + map.getSize());
            System.out.println("Frequency of PRIDE: " + map.get("pride"));
            System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
        }

        long endTime = System.nanoTime();

        return (endTime - startTime) / 1000000000.0;
    }

    public static void main(String[] args) {

        String filename = "pride-and-prejudice.txt";

        BSTMap bstMap = new BSTMap<>();
        double time1 = testMap(bstMap, filename);
        System.out.println("BST Map: " + time1 + " s");

        System.out.println();

        LinkedListMap linkedListMap = new LinkedListMap<>();
        double time2 = testMap(linkedListMap, filename);
        System.out.println("Linked List Map: " + time2 + " s");

    }
}

使用LinkedListMap

增 add   O(n)
删 remove    O(n)
改 set    O(n)
查 get    O(n)
查 contains    O(n)
BSTMap
增 add   O(h)
删 remove    O(h)
改 set    O(h)
查 get    O(h)
查 contains    O(h)

你可能感兴趣的:(数据结构)