- 个人学习笔记7-6:动手学深度学习pytorch版-李沐
浪子L
深度学习深度学习笔记计算机视觉python人工智能神经网络pytorch
#人工智能##深度学习##语义分割##计算机视觉##神经网络#计算机视觉13.11全卷积网络全卷积网络(fullyconvolutionalnetwork,FCN)采用卷积神经网络实现了从图像像素到像素类别的变换。引入l转置卷积(transposedconvolution)实现的,输出的类别预测与输入图像在像素级别上具有一一对应关系:通道维的输出即该位置对应像素的类别预测。13.11.1构造模型下
- 第二天 寻找了三篇深度学习综述(深度学习,目标检测,图像分割)
kim_ed33
##################ImageSegmentationUsingDeepLearning:ASurvey本文梳理了172篇相关文献。本文全面回顾了撰写本文时候的文献。包括但不限于全卷积像素标记网络(FCN),编码器-解码器体系结构,多尺度以及基于金字塔的方法,递归网络,视觉注意模型和对抗环境中的生成模型;从最早的方法(阈值化,K均值聚类,分水岭)到后来(随机场,细数方法一类的)再到
- 实例分割论文阅读之:FCN:《Fully Convolutional Networks for Semantica Segmentation》
交换喜悲
mdetection系列论文阅读目标检测人工智能实例分割计算机视觉卷积神经网络
论文地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf代码链接:https://github.com/pytorch/vision摘要卷积网络是强大的视觉模型,可以产生特征层次结构。我们证明,经过端到端、像素到像素训练的卷积网络
- 深度学习知识点汇总-目标检测(1)
深度学习模型优化
8.1R-FCNR-FCN属于two-stage的目标检测算法。backbone部分RPN,这里使用ResNet。head部分R-FCN,使用全连接网络。其中ResNet-101+R-FCN的方法在PASCALVOC2007测试数据集的mmAP达到83.6%。图1人脸检测R-FCN的核心思想得到目标多个特征。假设我们只有一个特征图用来检测右眼。那么我们可以使用它定位人脸吗?应该可以。因为右眼应该在
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- 「竞赛调研」GeoLifeCLEF 2022 x FGVC9 - 任务及解决方案
Sternstunden
竞赛计算机视觉机器学习人工智能
任务说明本次竞赛的目标是预测植物和动物物种的地理分布,比赛方提供了来自法国和美国的1.6M个地理定位的观测数据,涵盖17K个物种(其中9K个为植物物种,8K个为动物物种)。解决方案rank1-SensioTeam总体概述团队集成了3个模型:1.一个双模态网络。团队使用Nir+G+B,在预训练的resnet34上,将其最后一层堆叠到一个3层FCN(包含环境向量+纬度+经度+国家+海拔平均值+最大-最
- 语义分割:从早期探索到深度学习的突破
kadog
ByGPT深度学习人工智能笔记python
语义分割:从早期探索到深度学习的突破语义分割的端倪:从早期探索到深度学习的突破引言早期技术:图像处理与模式识别边缘检测区域生长图割(GraphCut)聚类方法深度学习的兴起:CNN革命2012年AlexNet的突破全卷积网络(FCN)U-Net的创新设计深度学习卷积网络技术不断创新发展里程碑:端到端学习端到端全卷积网络(FCN)MaskR-CNN的多任务学习Transformer在视觉任务中的应用
- 深入理解DeepLab系列语义分割网络
深蓝学院
深度学习计算机视觉大数据人工智能语义分割深度学习计算机视觉
语义分割是指在像素级别上进行分类,从而转换得到感兴趣区域的掩膜。说起语义分割的发展则肯定绕不开DeepLab系列语义分割网络,该系列网络由谷歌团队提出并发展,在VOC2012等公用语义分割数据集上,取得了较好的效果。1.DeepLabV1DeepLabV1[1]于2014年提出,在PASCALVOC2012数据集上取得了分割任务第二名的成绩。该网络是研究FCN之后发现在FCN中池化层会使得特征图的
- opencv调取摄像头一个简单的实例
郭庆汝
opencv计算机视觉人工智能
opencv调取摄像头一个简单的实例#coding:utf-8#In[1]:importsysfromdetection.MtcnnDetectorimportMtcnnDetectorfromdetection.detectorimportDetectorfromdetection.fcn_detectorimportFcnDetectorfromtrain.modelimportP_Net,R
- simulink信号线出现问号的话
想暴富,学技术
matlab
1、可以用display接信号线,看看是不是值为NaN,这样是测不出维度是多少的,因为是无效值。2、看一看是不是积分器代入初值的时候,维数不对应,比如明明是五维向量,代入了一个4维的初值,程序肯定报错的3、有的时候用Fcn产生一个列向量,会出现未知错误,建议用constant,然后输入一个列向量4、ctrl+D刷新一下5、function的输出通道有可能会报“无法识别输出数据的类型”,这个时候就要
- FCN全卷积网络Fully Convolutional Networks
踩坑第某人
语义分割CNN实现语义分割FCN实现语义分割全连接层注:以下内容摘自知乎全连接层(fullyconnectedlayers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层和卷积层可实现相互转换。参数冗余。通过研究发现,在包含全连接的网络
- 2、 前馈和反馈神经网络
爱补鱼的猫猫
深度学习笔记神经网络深度学习cnn
前馈和反馈神经网络神经网络分类一、CNN**1、结构****2、应用****3、CNN的类型综述**二、RNN**1、结构****2、应用****3、RNN类型**三、GAN**1、结构****2、应用****3、GAN类型**四、FCN五、ResNet六、反向传播BP和BPTT神经网络分类1、前馈神经网络:全连接神经网络(DNN)、卷积神经网络(CNN)、全卷积神经网络(FCN)、残差网络(Re
- 类比 C 冒泡排序,从 ctrgcn.py 看神经网络模型代码
一杯水果茶!
视觉与网络c语言神经网络代码逻辑
代码展示StepsStep1.importStep2.辅助2.1辅助函数2.2辅助类Step3.modelStep4.main扩展神经网络模型中的class具体怎么定义`classFCN(nn.Module)``def__init__(self,input_size,hidden_size,output_size)``super(FCN,self).__init__()``forward(self
- fcn网络训练代码_利用FCN-8s网络训练自己数据集(NYUD为例)
斯为成树
fcn网络训练代码
Papers:FullyConvolutionalModelsforSemanticSegmentationEvanShelhamer*,JonathanLong*,TrevorDarrellPAMI2016arXiv:1605.06211FullyConvolutionalModelsforSemanticSegmentationJonathanLong*,EvanShelhamer*,Trev
- 1、FCN_TensorFlow——VGG16_FCN8s构造代码分析
袁振国
首先,感谢MarvinTeichmann分享的KittiSeg代码,源码见其GitHub主页先贴一张全连接的VGG16模型,如图1:图11、全卷积神经网络(FCN)是在图1的基础上,将全连接层改为卷积替代并将其用于语义分割上,详情见论文《FullyConvolutionalNetworksforSemanticSegmentation》图2将全连接层修改为卷积层使得分类网络的输出变为一个热点图图3
- CAFFE -FCN训练配置过程
visionshop
深度学习
转载自http://blog.csdn.net/jiongnima/article/details/78549326?locationNum=3&fps=1在2015年发表于计算机视觉顶会CVPR上的FullyConvolutionalNetworksforSemanticSegmentation论文(下文中简称FCN)开创了图像语义分割的新流派。在后来的科研工作者发表学术论文做实验的时候,还常常
- 语义分割学习笔记(三)FCN网络结构详解
向岸看
深度学习-语义分割深度学习FCN网络语义分割
推荐课程:FCN网络结构详解(语义分割)_哔哩哔哩_bilibili感谢博主霹雳吧啦Wz/太阳花的小绿豆提供视频讲解和源码支持,真乃神人也!目录1.FCN网络概述2.几种不同的FCN网络(1)FCN-32s(2)FCN-16s(3)FCN-8s3.损失计算1.FCN网络概述FCN网络(FullyConvolutionalNetworks):首个端对端的针对像素级预测的全卷积网络。FCN网络思想:输
- FCN-8s源码理解
hzhj
深度学习人工智能
FCN网络用于对图像进行分割,由于是全卷积网络,所以对输入图像的分辨率没有要求。本文重点对fcn8s.py中图像降采样和上采样后图像分辨率的变换进行理解。相关知识为准确理解图像分辨率的变换,对网络结构中影响图像分辨率变换的几个函数进行简单回顾nn.Conv2d的参数详见这里,其输入和输出之间的关系如下,其中dilation默认为1.nn.MaxPool2d的参数详见这里,其输入和输出之间的关系如下
- FCN学习-----第一课
湘溶溶
分割深度学习学习深度学习人工智能python
语义分割中的全卷积网络CVPRIEEE国际计算机视觉与模式识别会议PAMIIEEE模式分析与机器智能汇刊需要会的知识点:神经网络:前向传播和反向传播卷积神经网络:CNN,卷积,池化,上采样分类网络:VGG,net,AlexNet,GoogLeNetPytorch基础必须学会:熟练掌握语义分割常识知识:概念、术语、应用(0.5)熟练掌握FCN算法模型:结构、意义、补充知识点(1天)熟练掌握FCN模型
- FCN——第二课
湘溶溶
分割深度学习深度学习人工智能学习python
语义分割中的全卷积网络语义分割中的全卷积网络一、引言和相关工作二、全卷积网络三、论文算法模型详解四、论文算法模型细节五、实验设置和结果分析六、讨论和总结一、引言和相关工作在以往的分割方法中,主要有两大类缺点:1.基于图像块的分割虽然常见,但是效率低,且往往需要前期或者后期处理(例如超像素、检测框局部预分类等)2.语义分割面临着语义和位置信息不可兼得的问题。全局信息解决的“是什么”,而局部信息解决的
- U-Net网络结构解析和代码解析
norah2
计算机视觉深度学习目标检测
U-Net网络结构详解在语义分割领域,基于深度学习的语义分割算法开山之作是FCN(FullyConvolutionalNetworksforSemanticSegmentation),而U-Net是遵循FCN的原理,并进行了相应的改进,使其适应小样本的简单分割问题。U-Net网络在医疗影像领域的应用十分广泛,成为了大多数医疗影像语义分割任务的baseline,同时基于U-Net网络改进网络也纷纷出
- 第二十六周:学习笔记
@默然
学习笔记
第二十六周:学习笔记摘要Abstract全卷积网络FCN1.CNN与FCN2.全连接层-->成卷积层3.FCN的缺点摘要全卷积神经网络(FullyConvolutionalNetwork,FCN)是一种用于图像分割和语义分割任务的深度学习模型。与传统的卷积神经网络(ConvolutionalNeuralNetworks,CNN)不同,FCN中的全卷积层(FullyConvolutionalLaye
- python环境运行FCN遇到的若干问题
melody723
pythonFCNtensorflow机器学习
win10系统,python3.5运行GitHub中经典算法FCN,tensorflow版本0.12代码链接:https://github.com/shekkizh/FCN.tensorflow1、Cannotfeedvalueofshape(0,)forTensor'input_image:0',whichhasshape'(?,224,224,3)']解决:删除Data_zoo\MIT_Sce
- 图像分割网络FCN详解与代码实现
金戈鐡馬
深度学习网络深度学习计算机视觉人工智能神经网络
全卷积网络(FCN):卷积神经网络从图像分类到到对象检测、实例分割、到图像语义分割、是卷积特征提取从粗糙输出到精炼输出的不断升级,基于卷积神经网络的全卷积分割网络FCN是像素级别的图像语义分割网络,相比以前传统的图像分割方法,基于卷积神经网络的分割更加的精准,适应性更强。上图是FCN网络像素级别的预测,支持每个像素点20个类别预测,多出来的一个类别是背景。要把一个正常的图像分类网络,转换为一个全卷
- Python实现FCN
又可乐
python深度学习tensorflow开发语言人工智能
FCN(全卷积神经网络)是一种深度学习模型,其中每一层都是卷积层。它被广泛用于图像分类和语义分割等任务。要在Python中实现FCN,你可以使用深度学习框架如TensorFlow或PyTorch。例如,在TensorFlow中,你可以使用tf.keras.layers.Conv2D层来构建模型的卷积层,使用tf.keras.layers.MaxPool2D层来构建池化层,并使用tf.keras.l
- 通过FCN模型实现图像分割(Python篇+代码)
CleloGauss
python深度学习计算机视觉
基于深度学习的图像分割方法深度学习是在超声图像分割中非常实用的方法,它的主要优点是能够生成由丰富语义和细微信息组成的多层次特征。将深度学习网络应用到甲状腺检测中,可以准确、快速的定位并对结节和实质区域进行精准勾画。使用深度神经网络的原因是神经网络是一种多层的、可训练的模型,这样的话,它就能对图像中的甲状腺结点起到分类效果,且通过一定量的正则化训练,神经网络的性能也将愈加优异,对图像的分类也更加精准
- 深度学习医学图像语义分割实战(一)
grace 1314
深度学习深度学习人工智能
1.什么是图像语义分割segementation一般是只对图像整体做分类,那么如果是将图像的目标提取出来,这就是语义分割。与分类不同的是,语义分割需要判断每个像素点的类别,进行精确分割,产生目标的掩码,图像的语义分割是像素级别的。2.如何对每个像素点进行分类语义分割最经典网络--FCN,常规的图像分类网络是最后展成全连接层,是一维输出,而FCN则可以将全连接层换成卷积,这样就可以得到一张二维的fe
- Dual Attention Network for Scene Segmentation
小小小~
yolo计算机视觉深度学习
文章:https://arxiv.org/pdf/1812.03904.pdf代码:https://github.com/junfu1115/DANet/在本文中,作者通过基于自我注意机制捕获丰富的上下文依赖来解决场景分割任务。与以往通过多尺度特征融合来捕获上下文的工作不同,本文提出了一种双注意网络(DANet)来自适应地将局部特征与其全局依赖性结合起来。具体来说,在扩展FCN的基础上增加了两种类
- 语义分割数据增强python代码
LEILEI18A
PythonPytorch数据(图像)处理pytorch语义分割语义分割数据增强opencv语义分割数据增强
语义分割数据增强python-pytorch代码-语义分割github项目0.先放github开源项目链接https://github.com/gengyanlei/segmentation_pytorch包含网络:deeplab_v3、deeplab_v3+、unet、pspnet、HED、HF_FCN、U^2Net。。。不断更新中,将本人写的其它博客合并至此!1.语义分割数据增强操作(1)随机
- OpenMMlab导出FCN模型并用onnxruntime推理
给算法爸爸上香
#segmentation#OpenMMlab#modeldeployment深度学习图像分割FCN
导出onnx文件直接使用脚本importtorchfrommmseg.apisinit_modelconfig_file='configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py'checkpoint_file='fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth'mo
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite