回溯法解决N皇后问题(以四皇后为例)

以4皇后为例,其他的N皇后问题以此类推。所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子。在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平、竖直、以及45度斜线上都不能出现皇后的棋子,例子

要求编程求出符合要求的情况的个数。四皇后问题有很多种解法,这里主要介绍一种经典的解决方法:回溯法

回溯法的基本思想是:可以构建出一棵解空间树,通过探索这棵解空间树,可以得到四皇后问题的一种或几种解。这样的解空间树有四棵

在如上图所示的4×4的棋盘上,按列来摆放棋子,首先因为皇后棋子不能在同一列,所以先排除有2个或2个以上的棋子在同一列的情况,所以第一个棋子在第一列有4种摆放方法(第1列第1行,第1列第2行,第1列第3行,第1列第4行),同样第二个棋子在第二列有4种,同样第三个棋子在第三列有4种,同样第四个棋子在第四列有4种,所以进行简单的排除不在同一列的情况后,还有4×4×4×4=256种可能,但是在这256种可能里,依然存在比如棋子在同一行,或在45度斜线上的情况出现。另一个角度思考,所有的满足四皇后问题的摆放方式一定都存在于这256种情况之中。简单的理解就是:这256种棋盘局面包含了所有满足4皇后问题的解,但是不包含全部的棋盘局面。

#include
#define maxn 4 
int count = 0;

int isCorrect(int i, int j, int (*Q)[maxn])
{
    int s, t;
    for(s=i,t=0; t=0&&t>=0; s--,t--)
        if(Q[s][t]==1)
            return 0;//判断左上方
    for(s=i+1,t=j+1; s=0&&t=0; s++,t--)
        if(Q[s][t]==1)
            return 0;//判断左下方

    return 1;//否则返回
}

void Queue(int j, int (*Q)[maxn])
{
    int i,k;
    if(j==maxn)  //递归结束条件
    {
        for(i=0; i

你可能感兴趣的:(N皇后问题,回溯)