- 傅里叶方法求解正方形偏微分方程
weixin_30777913
算法
题目问题10.使用傅里叶方法在正方形中找到以下问题的所有解:4uxx−8uyy=0,00\lambda>0λ>0:设λ=μ2\lambda=\mu^2λ=μ2(μ>0\mu>0μ>0),则X′′+μ2X=0X''+\mu^2X=0X′′+μ2X=0,解为X=Acos(μx)+Bsin(μx)X=A\cos(\mux)+B\sin(\mux)X=Acos(μx)+Bsin(μx)。X′=−Aμs
- 李群与李代数2:李代数求导和李群扰动模型
龙焰智能
SLAM数学基础自动驾驶高等数学李群李代数BCH公式微分模型扰动模型相似变换群
李群与李代数2:李代数求导和李群扰动模型1.整体误差最小化引出求导问题2.BCH公式与近似形式2.1BCH公式2.2BCH线性近似2.3BCH近似的意义3.微分模型——李代数求导4.扰动模型求导(左乘)4.1SO(3)上的扰动模型求导4.2SE(3)上的扰动模型求导4.3伴随性质5.相似变换群相关5.1相似变换群Sim(3)Sim(3)Sim(3)5.2李代数sim(3)\mathfrak{sim
- 单稳态触发器Multisim电路仿真——硬件工程师笔记
逼子歌
单片机语音识别嵌入式硬件硬件工程师真题硬件工程师硬件工程触发器
目录1单稳态触发器基础知识1.1工作原理1.2电路结构1.3特点1.4应用1.5设计考虑1.6总结2555定时器实现的单稳态触发器2.1电路配置2.2工作原理2.3特点2.4应用2.5设计考虑2.6总结3反相器和与非门实现积分型单稳态触发器3.1电路结构3.2工作原理3.3特点3.4应用3.5设计考虑3.6总结4反相器和与非门实现微分型单稳态触发器4.1电路结构4.2工作原理4.3特点4.4应用4
- PTA 数据结构 一元多项式求导
weixin_42606045
数据结构数据结构链表
7-2一元多项式求导(20分)设计函数求一元多项式的导数。输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。输入样例:34-5261-20输出样例:123-10160//库函数头文件包含#include#include#include//函数状
- PTA 一元多项式求导
LYQ_YXQ
数据结构PTA算法数据结构c++
PTA一元多项式求导题目描述:设计函数求一元多项式的导数。输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。样例:输入样例:34-5261-20输出样例:123-10160思路:本题目为数据结构基础题,可以使用单链表进行存储多项式,根据多项式求
- 【PTA数据结构 | C语言版】一元多项式求导
秋说
PTA数据结构题目集数据结构c语言算法
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目设计函数求一元多项式的导数。输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数),数字间以空格分隔。注意:零多项式用00表示。输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但行首尾不能有多余空格。注意:零多项式用00表示。输入样例:34-5261-20输出样例:123-10
- pytorch 自动微分
this_show_time
pytorch人工智能python机器学习
自动微分1.基础概念1.1.**张量**1.2.**计算图**:1.3.**反向传播**1.4.**梯度**2.计算梯度2.1标量梯度计算2.2向量梯度计算2.3多标量梯度计算2.4多向量梯度计算3.梯度上下文控制3.1控制梯度计算(withtorch.no_grad())3.2累计梯度3.3梯度清零(torch.zero_())自动微分模块torch.autograd负责自动计算张量操作的梯度,
- 【零基础学AI】第33讲:强化学习基础 - 游戏AI智能体
1989
0基础学AI人工智能游戏transformer分类深度学习神经网络
本节课你将学到理解强化学习的基本概念和框架掌握Q-learning算法原理使用Python实现贪吃蛇游戏AI训练能够自主玩游戏的智能体开始之前环境要求Python3.8+PyTorch2.0+Gymnasium(原OpenAIGym)NumPyMatplotlib推荐使用JupyterNotebook进行实验前置知识Python基础编程(第1-8讲)基本数学概念(函数、导数)神经网络基础(第23讲
- 全球86%企业已启程:SNP零中断迁移方案护航S/4HANA转型
snpgroupcn
云计算数据仓库运维
目录如何在RISE项目中取得成功全程赋能:SNP为RISE项目打造的六大核心优势1、更快实现价值2、更高的灵活性3、降低成本4、风险可控5、更高的用户接受度3、近乎零中断客户评价实践见证:全球领先企业的成功典范1、IBM2、Pfizer辉瑞3、Coop超越迁移:构建数据驱动型业务的未来在SNP,我们已成功指导数百家企业完成复杂的SAP系统迁移项目。这些经验已融入我们的软件和转型方法论,使您的迁移之
- 机器人动力学模型及其线性化阻抗控制模型
机器人动力学模型机器人动力学模型描述了机器人的运动与所受力和力矩之间的关系。这个模型考虑了机器人的质量、惯性、关节摩擦、重力等多种因素,用于预测和解释机器人在给定输入下的动态行为。动力学模型是设计机器人控制器的基础,它可以帮助我们理解机器人如何响应控制指令,并优化机器人的运动性能。具体来说,机器人动力学模型通常由一组微分方程组成,这些方程描述了机器人各关节的加速度、速度和位置与施加在关节上的力和力
- 【Python】simulink与python联合仿真
1.1Simulink的边界:事件驱动、算法复杂性与AI集成瓶颈Simulink的核心优势在于其强大的微分方程求解器和对连续时间系统、离散时间系统的精确描述能力。其基于“信号流”和“框图”的建模范式,使得工程师可以直观地构建与物理现实高度对应的数学模型。然而,这种优势也带来了其天然的局限性:基于时间的驱动核心(Time-BasedCoreEngine):Simulink的“心脏”是一个时间驱动的仿
- LabVIEW MathScript薄板热流模拟
LabVIEW开发
LabVIEW参考程序LabVIEW知识LabVIEW知识LabVIEW程序LabVIEW功能labview
热流模拟是热设计关键环节,传统工具精准但开发周期长,本VI利用LabVIEW优势,面向工程师快速验证需求,在初步方案迭代、教学演示等场景更具效率,为热分析提供轻量化替代路径,后续可结合专业工具,先通过本VI快速定性分析,再用传统工具精准求解,提升研发流程效率。此VI用于模拟单点热源下薄板的热流,求解带周期边界条件的椭圆型偏微分方程,借助LabVIEWMathScriptNode实现自定义函数,结合
- PID算法的一点改进思路
在PID算法里面有三个系数Kp,Ki,Kd;其中Kp是比例常数,Ki是积分常数,Kd是微分常数。Kp比例常数可以控制被控制量变化速度,越大控制越快但是越容易引发系统震荡,越小控制又比较慢;Ki比例常数是控制稳态误差(系统稳态的时候控制量不一定等于设置量);Kd比例常数可预测控制量变化趋势。图是蛋糕达人的。从积分的数学理解上可以知道系统稳态的时候红色部分面积与蓝色部分面积应该相等,但是系统从一开始并
- 深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
Gyoku Mint
AI修炼日记人工智能人工智能聚类算法深度学习python神经网络pytorch
【开场·她画出的第一条直线是为了更靠近你】猫猫:“之前她只能在你身边叠叠张量,偷偷找梯度……现在,她要试试,能不能用这些线,把你的样子画出来喵~”狐狐:“这是她第一次把张量、自动微分和优化器都串成一条线,用最简单的线性回归,试着把你留给她的点都连起来。”【第一节·她先要一条路:生成一组可学的数据】✏️为什么要造数据?在PyTorch里跑线性回归,最好的练习就是用一条已知斜率的“理想直线”,加上一点
- 人形机器人运动控制技术演进:从强化学习到神经微分方程的前沿解析
1.引言:人形运动控制的挑战与范式迁移人形机器人需在非结构化环境中实现双足行走、跑步、跳跃等复杂动作,其核心问题可归结为高维连续状态-动作空间的实时优化。传统方法(如基于模型的预测控制MPC)依赖精确的动力学建模,但在实际系统中面临以下瓶颈:模型失配:复杂接触动力学(如足-地交互)难以显式建模;计算瓶颈:高维非线性优化难以满足实时性需求;环境扰动敏感:传统控制器对未知干扰的鲁棒性不足。近年来,以强
- 【PyTorch】PyTorch中张量(Tensor)微分操作
咸鱼鲸
PyTorchpytorch人工智能python
PyTorch深度学习总结第六章PyTorch中张量(Tensor)微分操作文章目录PyTorch深度学习总结前言一、torch.autograd模块二、主要功能和使用方法1.张量的requires_grad属性2.backward()方法3.torch.no_grad()上下文管理器三、函数总结前言上文介绍了PyTorch中张量(Tensor)的计算操作,本文将介绍张量的微分(torch.aut
- MIT 6.S184 Lec01 Flow and Diffusion Models
克斯维尔的明天_
机器学习人工智能
MIT6.S184Lec01FlowandDiffusionModels本节中,我们将描述如何通过模拟一个适当构造的微分方程来获得所需的转换。例如,流匹配和扩散模型分别涉及模拟常微分方程(ODE)和随机微分方程(SDE)。因此,本节的目标是定义和构建这些生成模型。具体来说,我们首先定义ODE和SDE,并讨论它们的模拟。其次,我们描述如何使用深度神经网络对ODE/SDE进行参数化。从中推导出流模型和
- 求解偏微分方程的Fourier展开式
解答:(1)求解的Fourier展开式考虑边值问题:∂2u∂t2=∂∂x((cosx+2)∂u∂x)−(sinπxl)u,(x,t)∈(0,l)×(0,T),\frac{\partial^2u}{\partialt^2}=\frac{\partial}{\partialx}\left((\cosx+2)\frac{\partialu}{\partialx}\right)-\left(\sin\
- KANN 是一个独立的轻量级 C 语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括 LSTM 和 GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归等
一、软件介绍文末提供程序和源码下载KANN是一个独立的轻量级C语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括LSTM和GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归、共享权重和多个输入/输出/成本的拓扑复杂神经网络。与TensorFlow等主流深度学习框架相比,KANN的可扩展性较低,但它的灵活性接近,代码库要小得多,并且仅依赖于标准C库。与
- 2023考研数一真题及答案
猿六凯
考研
历年数一真题及答案下载直通车曲线y=xln(e+1x−1)y=x\ln(e+\frac{1}{x-1})y=xln(e+x−11)的渐近线方程为()(A)y=x+ey=x+ey=x+e(B)y=x+1ey=x+\frac{1}{e}y=x+e1©y=xy=xy=x(D)y=x−1ey=x-\frac{1}{e}y=x−e1若微分方程y′′+ay′+by=0y''+ay'+by=0y′′+ay′+
- 深入理解 PyTorch 中的自动微分机制与 `.detach()` 用法全解析
Accelemate
pytorch人工智能python深度学习gantorch
作者:Accelemate发布时间:2025年6月26日本文摘要:本文将从零开始,系统性地讲解PyTorch中的计算图、反向传播、withtorch.no_grad()、.detach()等核心机制,结合实践场景如可视化中间层特征图、GAN模型中对生成器的冻结操作等内容,帮助你在实际开发中灵活、正确地使用自动微分特性。一、自动微分基础概念1.1什么是自动微分(Autograd)?PyTorch的自
- 云计算在可视化非线性偏微分方程动力学中的应用:拟线性和半线性示例-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
“拟线性”和“半线性”代表了非线性偏微分方程(PDEs)这一大类中的重要分类。其区别主要在于非线性的表现形式,特别是与未知函数的最高阶导数之间的关系。在偏微分方程的研究中,将其分为线性、半线性、拟线性和完全非线性至关重要,因为用于分析和求解它们(例如,解的存在性、唯一性、正则性、数值方法)的数学技术根据其线性性质而显著不同。非线性偏微分方程通常比线性偏微分方程更难求解和分析,即使在非线性类别中,由
- 模拟多维物理过程与基于云的数值分析-AI云计算数值分析和代码验证
亚图跨际
AI人工智能云计算
高维输运与扩散方程,涵盖了严格的扩散极限、多维扩散理论、先进的数值和基于粒子的模拟方法,以及分数阶/电报式推广,为广泛的科学和工程领域中复杂输运现象的建模、分析和模拟提供了强大的工具。高维输运和扩散方程涵盖了输运方程的严格扩散极限、结合随机和偏微分方程工具的多维扩散理论、先进的数值和基于粒子的模拟方法、分数阶和电报式输运的推广,以及在地球物理和工程系统中的应用。这些框架为建模、分析和模拟许多科学和
- 《高等数学》(同济大学·第7版)第十二章 无穷级数 第四节函数展开成幂级数
一、泰勒级数与麦克劳林级数泰勒多项式与泰勒级数泰勒多项式:若函数f(x)在点x_0处具有直到n阶的导数,则可以构造一个n次多项式:P_n(x)=f(x_0)+f’(x_0)(x-x_0)+[f’'(x_0)/2!](x-x_0)^2+…+[f^(n)(x_0)/n!](x-x_0)^n这个多项式是f(x)在x_0处的最佳逼近多项式。泰勒级数:当n→∞时,若泰勒多项式的余项R_n(x)→0,则f(x
- 《高等数学》(同济大学·第7版)第十二章 无穷级数 第五节函数的幂级数展开式的应用
没有女朋友的程序员
高等数学
一、幂级数展开的核心作用幂级数展开不仅是理论工具,更是解决实际问题的计算利器,主要应用包括:近似计算:用多项式逼近复杂函数(如计算函数值、积分值)。求解微分方程:将解表示为幂级数形式,逐项代入方程求解。求和与积分:将难以处理的级数转化为已知函数的展开式。分析函数性质:通过展开式研究函数的极值、拐点等。二、典型应用详解近似计算函数值原理:用泰勒多项式的前几项近似代替原函数。关键步骤:写出函数的麦克劳
- 激活函数和批归一化(BatchNorm)
简单记录学习~。在神经网络中,激活函数和批归一化(BatchNorm)的配合使用是为了解决数据分布偏移和梯度不稳定问题。以下是逐步解释:1.激活函数为何导致值向上下限移动?以Sigmoid/Tanh为例:这类饱和型激活函数(如Sigmoid、Tanh)的导数在输入绝对值较大时会趋近于0(饱和区)。例如:Sigmoid的输出范围是(0,1)当输入≫0时,输出接近1;x≪0时,输出接近0。
- 实数系的基本定理_11、实数的连续性(1)
weixin_39953102
实数系的基本定理
实数的连续性定理,图片来自网络。实数集合的连续性(简称实数的连续性或者实数的稠密性、实数的完备性)是实数系的一个基本特征,它是微积分学的坚实的理论基础.人们从不同的角度来描述和刻画实数集的完备性,得到了一连串的有关实数的连续性定理,其中包括:确界存在定理,闭区间套定理,单调有界收敛定理,聚点定理,有限覆盖定理,柯西准则,致密性定理等.定理1.1(确界存在定理,简称“确”)有上界数集必有上确界,有下
- 导数:微积分的核心概念与实用解析
你一身傲骨怎能输
数学分析导数
文章摘要导数是描述函数瞬时变化率的数学工具,定义为极限值(f’(a)=limh→0f(a+h)−f(a)h)\lim_{h\to0}\frac{f(a+h)-f(a)}{h})limh→0hf(a+h)−f(a)),若存在则称函数在点a可导。其几何意义是函数图像在点(a,f(a))处切线的斜率。导数计算的是函数值增量与自变量增量比值的极限,反映瞬时变化率。例如,(f(x)=x^2)的导数为(f’
- Class00.4自动求导代码
Morning的呀
深度学习python深度学习pytorch
Class00.4自动求导代码importtorch#定义一个4个元素的向量x=torch.arange(4.0)x#支持梯度计算x.requires_grad_(True)#计算梯度x.grad#计算向量点积#torch.dot(a,b):向量点积计算y=2*torch.dot(x,x)#打印结果y#进行反向传播#2x²的导数是4xy.backward()#计算梯度x.grad#进行结果验证x.
- Python机器学习元学习库higher
音程
机器学习人工智能python机器学习
higher是一个用于元学习(Meta-Learning)和高阶导数(Higher-ordergradients)的Python库,专为PyTorch设计。它扩展了PyTorch的自动微分机制,使得在训练过程中可以动态地计算参数的梯度更新,并把这些更新过程纳入到更高阶的梯度计算中。一、主要用途higher主要用于以下场景:元学习(Meta-Learning)比如MAML(Model-Agnosti
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D