- 基于阿里云调用deepseek大模型
atwdy
大模型deepseekdeepseek-r1deepseekAPI阿里云
文章目录1.单轮对话2.多轮对话参考文档选择需要调用的模型,每个模型的详细信息中会有API示例(deepseek-r1),需要做的就是申请自己的APIkey就行了,过程中可能需要实名认证。python中安装OpenAISDK:pipinstallopenai。安装后如果出现ImportError,可能是python的版本低了,升级下版本。当前测试环境是Python3.9.7,openai==1.6
- 学习prompt
artificiali
prompt
1解释概念中文指令:请借助费曼学习法,以简单的语言解释[特定概念]是什么,并提供一个例子来说明它如何应用。Prompt:PleaseusetheFeynmanLearningTechniquetoexplain[specificconcept]insimplelanguage,andprovideanexampletoillustratehowitapplies.2帕累托法则帮你找到最重要、最具挑
- 百变背景:万相实验室AIGC电商图片可控生成技术
阿里妈妈技术
AIGC人工智能
✍本文作者:云芑、因尘、岁星、也鹿1.背景随着AI生成内容(AIGC)技术如Diffusion的飞速进展,现如今,大家已能够轻易地使用StableDiffusion(SD)[1]等文生图的模型或工具,将心中所想仅凭语言描述(prompt)即转化为具体图像。基于此,我们不禁思考:是否有可能进一步发展该技术,允许用户通过描述来为商品定制特定背景,从而协助商家快速且轻松地打造理想的商品图像?例如,为一个
- c语言实现:输入一个字符串,统计出这个字符串的字符个数
artificiali
c语言算法c语言
最近开始学遇到的一个小问题先上代码:#include#includeintmain(){charstr[100];intcount=0,i;printf("请输入一个字符串:");gets(str);//遍历字符串每个字符,累加字符数for(i=0;str[i]!='\0';i++){count++;}printf("输入的字符串中共有%d个字符。\n",count);return0;}在以上代码
- STM32与C51简述
THIRT13N
嵌入式编程语言stm32
STM32与C51简述嵌入式开发心得1.关于C51与STM32的说明C51是最早一批进入中国市场的可开发操作的板子/芯片,在早期有着较好的发展方向学习浪潮,早期也有着发达的社区可供交流。随着电子科技的蓬勃发展,STM32逐渐走进了人们的视野。STM32下的几块开发板以其精准得控制,完美得性能,与时俱进的外接设备受到了无数开发者的青睐,至今仍在电子科技的基础产业中起着极其重要的作用,并且发达的社区提
- 苹果企业签名的性价比
苹果企业签名分发
苹果企业签名
苹果企业签名(AppleEnterpriseDeveloperProgram)是苹果公司为企业开发者提供的一种应用分发方式,允许企业在不通过AppStore的情况下,直接向员工或特定用户分发内部应用。其性价比取决于具体需求和使用场景,以下从多个角度分析其优缺点及适用性:---###**一、企业签名的主要优势**1.**无需上架AppStore**-适合企业内部工具、测试版应用或定制化应用,避免审核
- aardio - 虚表 —— 两个虚表之间互相拖动交换数据
卢光庆
aardioaardio
插入到虚表末尾的方法:importwin.ui;importgodking.vlistEx;/*DSG{{*/mainForm=win.form(text="vlistEx-tableadapter";right=849;bottom=578;border="thin")mainForm.add(radiobutton={cls="radiobutton";text="移动";left=768;t
- iOS安全和逆向系列教程 第13篇:iOS动态分析基础
自学不成才
iOS安全和逆向系列教程ioscocoamacos
iOS逆向工程专栏第13篇:iOS动态分析基础引言在前面的文章中,我们详细探讨了iOS系统架构、逆向开发环境搭建、Mach-O文件格式分析,以及各种静态分析工具和技术。通过静态分析,我们可以了解应用的结构、类和方法定义,以及基本的控制流程。然而,静态分析也存在明显的局限性:我们无法观察应用的实际运行状态,难以分析加密算法的实现细节,也无法直接查看网络请求的完整内容。这就是为什么我们需要动态分析技术
- Git与GitHub:它们是什么,有什么区别与联系?
名之以父
AllInAI前端javascriptgithub开发语言人工智能个人开发gitcode
1.Git是什么?Git是一个开源的、分布式版本控制系统(VersionControlSystem,VCS),由LinusTorvalds于2005年开发,最初用于管理Linux内核的开发。它的核心功能是跟踪文件的变更历史,帮助开发者高效管理代码版本,支持多人协作开发核心特点:分布式:每个开发者本地都有一个完整的仓库副本(包括完整历史记录),无需依赖中央服务器分支管理:轻松创建、切换和合并分支,支
- 驭码CodeRider 闪电适配阿里QwQ-32B:8小时全栈集成,AI编程效率飞跃!
极小狐
AI编程驭码CodeRiderDevSecOpsgitlab极狐GitLab
今日凌晨,国产大模型领域迎来重大突破:阿里正式发布32B推理模型QwQ-32B,根据Qwen公布的基准测试数据,QwQ-32B整体性能可媲美DeepSeek-R1,在数学推理、编程能力和通用能力等关键测试中展现出卓越性能。作为AI编程领域的创新力量,驭码CodeRider始终秉承SOTA(State-of-the-Art,指在特定任务或领域中目前性能最先进的模型)模型策略,不断动态测试与更新适配最
- 机器视觉3D线激光轮廓仪的精度为什么高
视觉人机器视觉
杂说3d机器人opencv人工智能视觉检测
3D激光轮廓仪的高精度源于其硬件设计、光学系统、软件算法及环境控制等多方面的协同优化,以下是具体原因的分点解析:激光光源的高性能单色性与方向性:激光具有极好的单色性和准直性,光束发散角小,能形成稳定的光斑,减少光路偏差。高稳定性:激光器输出功率和波长稳定,避免因光源波动导致的测量误差。短波长优势:部分激光采用短波长(如蓝光),可检测更微小的表面细节,提升分辨率。高分辨率传感器CMOS/CCD传感器
- 阿里云CTO:通义稳居全球最强开源大模型,性能接近GPT-4o
首席数智官
人工智能阿里云云计算
来源:@首席数智官9月19日,在2024杭州云栖大会上,阿里云CTO周靖人表示,阿里云正在围绕AI时代,树立一个AI基础设施的新标准,全面升级从服务器到计算、存储、网络、数据处理、模型训练和推理平台的技术架构体系,让数据中心成为一台超级计算机,为每个AI和应用提供高性能、高效的算力服务。大会现场,通义大模型迎来了年度重磅发布。基础模型升级,性能媲美GPT-4o,发布最强开源模型Qwen2.5系列,
- 简单分析Mysql不同方式联表查询的效率问题
逆袭的小学生
MySQL联表mysqljoin
前言:在项目中看别人写的后台代码发现了多种连表查询的方式,所以来调查一下哪种连表查询方式效率较高,以及如何优化,因为初入门,所以可能有些知识不准确,理解大意即可,对细节感兴趣的请自行查找。参考:https://www.cnblogs.com/wyq178/p/11576065.htmlhttps://blog.csdn.net/hzz532968708/article/details/773704
- 数据的封装和解封装
数据链路摸索者
网络安全网络网络协议tcp/ip
一、什么是封装封装(encapsulate/encapsulation):发送方数据要通过网络进行传输,从高向下逐层传送,如果一个主机要传送数据到别的主机,需要加上每层的报头控制信息,这个过程叫封装。封装分为:切片和加控制信息(加上每层的报头)注意:只有封装完成的数据才可以发送出去!!二、什么是解封装解封装:针对接收方,进行数据报头的剥离,上述的逆向过程三、发送方的数据封装TCP/IP对等模型发送
- STM32入门教程:按键控制LED
粉绿色的西瓜大大
stm32嵌入式硬件单片机
STM32是一款非常强大的微控制器系列,具有广泛的应用领域。本教程将详细介绍如何使用STM32来使用按键控制LED灯的开关。为了使本教程易于理解,我将使用STM32CubeIDE作为开发环境,并使用STM32F4系列微控制器进行演示。在本教程中,我们将使用STM32F4-Discovery开发板,其中包含了一个用户按钮和几个LED指示灯。我们将利用这些硬件资源来演示如何通过按下按钮来控制LED灯的
- 特斯拉FSD不同版本的进化
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
特斯拉,FSD,自动驾驶,深度学习,计算机视觉,强化学习,神经网络,模型训练1.背景介绍特斯拉自2016年推出Autopilot以来,一直致力于开发全自动驾驶系统,其目标是实现完全无人驾驶,让汽车能够像人类一样感知周围环境,做出安全可靠的驾驶决策。FSD(FullSelf-Driving)是特斯拉自动驾驶系统的最高级别,它旨在实现车辆在任何道路和环境条件下都能安全自主驾驶的能力。FSD的开发是一个
- Manus AI:全球首款通用型 AI Agent 的创新与挑战
萧鼎
python基础到进阶教程人工智能
1.引言:AIAgent时代的到来人工智能正在从单纯的对话式助手进化为更高级的智能体(Agent),能够自主完成任务,而不仅仅是提供信息或建议。2025年3月6日,由中国团队Monica推出的ManusAI正式亮相,号称全球首款通用型AIAgent(自主智能体)。与传统的AI助手相比,Manus不仅能够理解用户的自然语言指令,还能拆解任务、自动执行,并交付完整的成果。这标志着AI进入了一个新的发展
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- DeepSeek掘金——Deepseek + Lakehouse 架构 赋能企业数字化转型
不二人生
大模型DeepSeek掘金指南大模型deepseek数据湖
Deepseek+Lakehouse架构最近Deepseek这股风刮得太猛了,本周末的大事莫过于腾讯于2025年2月15日晚开始灰度测试在微信中接入DeepSeek-R1模型。作为一个月活将近14亿的国民级app,表达一个开放的意愿就已经能够让股价火箭上天。而另一面,笔者的朋友圈也都很躁动,众多企业朋友们都在热情入局Deepseek。今天想跟大家聊聊最近比较火的Deepseek私有部署+Lakeh
- 【实战】Deepseek+Heygen+剪映快速生产数字人讲解的视频内容
kakaZhui
AI前线:解密DeepSeek重塑未来竞争力音视频人工智能数据库AIGCchatgpt
在当今这个视频内容爆炸的时代,如何快速、高效地生产高质量的视频内容成为了许多内容创作者=的焦点。特别是对于需要大量讲解类视频的场景,例如产品介绍、知识科普、在线教育等,传统真人出镜的方式往往耗时耗力。而数字人技术的出现,为我们提供了一种全新的解决方案。结合强大的AI语言模型和便捷的视频剪辑工具,我们可以轻松实现低成本、高效率的数字人讲解视频生产。本文将为大家介绍一种基于Deepseek+Heyge
- docker-compose部署mongodb 5.0.5集群
inventecsh
dockermongodb容器
一、服务器10.1.1.16510.1.1.16410.1.1.169二、生成mongodb.keyroot@mongodb:/data#opensslrand-base64756>mongodb.keyu2aDJG+yz9uLwdWSavN/yh7noG0wfnTvOalKO5xNuTMQ85daIqkWnOh1YgKzbosrqTvU1Np2PU4QpLJIHtwU1XfHgvkCQRR7ox
- AI与大数据融合:技术路径与行业赋能
互联网Ai好者
人工智能大数据
在数字化浪潮中,数据已成为驱动社会与商业变革的核心生产要素。据IDC预测,2025年全球数据总量将增长至175ZB,其中物联网设备、社交媒体及企业数字化系统贡献了80%的增量数据。面对海量异构数据的处理需求,传统分析工具已显现出明显局限:Gartner研究指出,仅35%的企业能有效利用其数据资产。在此背景下,人工智能技术通过算法突破与算力跃迁,正重塑大数据价值挖掘范式,构建从数据感知到决策闭环的全
- 硅谷硬核Rasa课程、Rasa培训、Rasa面试系列之: Rasa 3.x Config
StarSpaceNLP
面试职场和发展
ModelConfiguration配置文件定义了模型根据用户输入进行预测的组件和策略。recipe键允许不同类型的配置和模型架构。目前,只支持“default.v1”。语言键和管道键指定模型用于进行NLU预测的组件。Policys键定义了模型用于预测下一个操作的策略。如果您不知道要选择哪些组件或策略,可以使用建议的配置功能,这将推荐合理的默认设置。SuggestedConfig您可以将管道或策略
- 如何通过卷积神经网络(CNN)有效地提取图像的局部特征,并在CIFAR-10数据集上实现高精度的分类?
浪九天
人工智能理论python后端深度学习神经网络人工智能机器学习pytorch
目录1.CNN提取图像局部特征的原理2.在CIFAR-10数据集上实现高精度分类的步骤2.1数据准备2.2构建CNN模型2.3定义损失函数和优化器2.4训练模型2.5测试模型3.提高分类精度的技巧卷积神经网络(ConvolutionalNeuralNetwork,CNN)是专门为处理具有网格结构数据(如图像)而设计的深度学习模型,能够有效地提取图像的局部特征。下面将详细介绍如何通过CNN提取图像局
- 大模型企业落地:汽车行业知识大模型应用
AGI大模型学习
python人工智能prompt机器学习深度学习学习语言模型
前言在当今这个信息爆炸的时代,知识管理成为了企业提升核心竞争力的关键。特别是在汽车行业这样一个技术密集、信息量庞大的领域,如何高效管理和利用知识资源,成为了每个企业必须面对的挑战。汽车行业的知识管理痛点汽车行业作为现代工业的集大成者,其知识体系庞杂而精细。从设计知识到生产知识,从营销知识到客户服务知识,每一个环节都依赖于大量的专业信息和经验积累。然而,传统的知识管理方式面临着诸多挑战:知识分散:知
- 【Flink】(二)详解 Flink 运行架构_flink的运行架构负荷分担是什么
2301_82242724
flink架构大数据
作业管理器(JobManager)、资源管理器(ResourceManager)、任务管理器(TaskManager),以及分发器(Dispatcher)。因为Flink是用Java和Scala实现的,所以所有组件都会运行在Java虚拟机上。每个组件的职责如下:作业管理器(JobManager)控制一个应用程序执行的主进程,也就是说,每个应用程序都会被一个不同的JobManager所控制执行。Jo
- Spring AI 实战:手把手教你打造一个智能客服机器人!
Leaton Lee
spring人工智能机器人
前言:为什么要做一个智能客服机器人?在当今数字化时代,智能客服机器人已经成为企业提升用户体验和服务效率的重要工具。无论是解答用户问题、处理订单咨询,还是提供技术支持,智能客服机器人都能够高效地完成任务。SpringAI框架为我们提供了一个强大的工具集,结合自然语言处理(NLP)技术,我们可以轻松地构建一个功能强大的智能客服机器人。本文将从零开始,一步步教你如何利用SpringAI和相关技术打造一个
- AI大模型在职业教育中的应用解决方案
中年猿人
人工智能ai学习
1.引言随着新经济、新技术的加速发展和经济结构的不断调整,职业教育迎来了新的发展机遇与挑战。传统的职业教育模式难以满足日益个性化、多样化的学习需求,同时,技术快速更迭使得职业技能更新频率大幅提高。这些变化要求职业教育能够更加灵活、高效地适应劳动力市场的需求,并为学生提供与时俱进的技能培养。人工智能(AI)作为一种前沿的科技趋势,其大模型技术通过强大的数据处理能力和学习算法,在众多行业中均展现了巨大
- 主流爬虫框架scrapy的架构及原理
迷鹿鹿鹿鹿鹿
爬虫scrapy架构
一、Scrapy架构概览Scrapy是一个基于Twisted异步网络框架构建的高效爬虫框架,其核心架构采用事件驱动模型,支持高并发、可扩展的网页抓取。以下是其核心组件及数据流示意图:+-------------------------------------------------+|ScrapyEngine|控制数据流+--------+------------------+----------
- 《Ollama :开启本地大模型部署新时代》:此文为AI自动生成
空云风语
人工智能python网络人工智能
《Ollama:开启本地大模型部署新时代》:此文为AI自动生成走进Ollama在大模型技术迅猛发展的当下,Ollama如同一颗耀眼的新星,在众多大模型中崭露头角。它以其独特的魅力,吸引了无数开发者和科技爱好者的目光,成为了本地大模型部署领域中备受瞩目的存在。大模型领域的发展日新月异,从最初的探索到如今的广泛应用,每一次突破都带来了全新的可能性。而Ollama的出现,无疑为这一领域注入了新的活力。它
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号