- 面向对象基础篇1
浅清陌
python基础python
1.什么是面向对象?对于面向对象编程,我们首先要知道的是什么是面向对象,然后才能运用面向对象去解决实际的问题。而面向对象是一种抽象化的编程思想,在很多编程语言中都有这个概念。在面向对象的思想中,我们强调万物皆对象,即现实世界中的所有事物都可以被抽象为程序中的对象,从而更好地实现程序的设计和开发。对于以往的函数编程,将一个功能设计为一个函数,需要使用该功能的时候调用函数就完成了,这种方法强调将计算看
- IT大环境差,程序员摆烂还是不断进取?在校生/应届生/社招生/大龄程序员的未来职业发展之路!
马士兵教育
java开发语言大数据人工智能程序员
IT大环境差,程序员摆烂还是不断进取?在校生/应届生/社招生/大龄程序员的未来职业发展之路!IT大环境差,程序员摆烂还是不断进取?在校生/应届生/社招生/大龄程序员的未来职业发展之路!【码士集团】_哔哩哔哩_bilibili2.双非本,杭电211,研0,想研二去实习,该怎么走?_哔哩哔哩_bilibili3.双非本,硕士211,研0,本科计算机,硕士控制工程,研究方向是大模型,如果定大方向,是ja
- 第 6 部分 - 视图集和路由器
pythondjango
DjangoREST框架包含一个用于处理视图集的抽象层,这样开发者就可以集中精力去建模API的状态和交互,而将URL构建自动交给系统处理,基于常见的约定来完成。视图集类和视图类几乎是一样的,只不过它们提供的是像retrieve或者update这样的操作,而不是像get或者put这样的方法处理程序。当视图集类被实例化为一组视图时,才会在最后一刻与一组方法处理程序绑定,通常是由路由器类来处理定义URL
- 驾驭代码之道:JS/TS SOLID面向对象设计的五大黄金法则
领码科技
低代码技能篇javascript开发语言SOLID原则TypeScript面向对象代码设计AI辅助开发
摘要在现代JavaScript和TypeScript开发中,代码质量与可维护性至关重要。SOLID原则作为面向对象设计的经典法则,为构建稳健、灵活的系统架构提供了科学指导。本文不仅系统阐释单一职责、开闭、里氏替换、接口隔离和依赖倒置五大原则的核心精髓,还结合当今流行的AI智能辅助、微前端、低代码开发等新技术与新思维,深入剖析它们在实际JS/TS项目中的应用场景和最佳实践。通俗易懂的理论讲解、丰富的
- 路由表原理以及数据包进入路由器,路由器的处理
路由表原理以及数据包进入路由器,路由器的处理路由表是路由器转发数据包的数据库,当路由表收到一个数据包时,它会用数据报的目的IP地址去匹配路由表中的路由条目,然后根据匹配条目的路由参数决定如何转发这个数据包。但是,路由表中的路由条目并不会由路由器根据入站数据包的信息自动填充。路由信息的3种来源:链路层协议发现的路由(也称为直连路由):只要连接该网络的接口状态正常,那么管理员就不需要进行任何配置,直连
- 运放的放大倍数、增益、开环、闭环,这几个概念你懂了吗?
HW-BASE
电路分析与仿真嵌入式硬件硬件工程
运放的放大倍数、增益、开环、闭环,这几个概念你懂了吗?1、放大倍数放大倍数的意思是,运放电路将输入信号放大了多少倍;放大倍数A=输出电压uo/输入电压ui,单位为1或者无单位2、开环放大倍数运放没有引入反馈时,此时运放的放大倍数称为开环放大倍数A=uo/(V+-V-)运放的开环放大倍数那是相当大,成千上万倍、十万倍…而我们平时的运放电路的放大倍数一般就几倍、几十倍3、增益当运放的放大倍数特别大时,
- 别再乱选浴室柜!2025三大品牌浴室柜详细选购指南,把最好的推荐给你
最近收到了不少私信,基本都在说,被各种品牌的高端定制,精美图片搞到头晕发胀,好不容易选定后,买回家才发现——台面积水严重,柜体容易发霉,还有五金生锈!所以今天这篇选购指南,咱们不讲虚的,直接给伙伴们上浴室柜行业内部经验,横评分享三大知名品牌亮点。帮你们避开那些看起来很精美但实则是绣花枕头的坑。选购浴室柜时,大多需要从三个大维度去考虑。柜体材质,经过特殊防水处理的实木,适合干湿分离良好的卫生间,20
- 大模型——Obsidian加Cursor就是最强个人AI知识库
不二人生
大模型人工智能爬虫大模型Obsidiancursor
大模型——Obsidian加Cursor就是最强个人AI知识库这几天因为看到了Obsidian的浏览器剪藏插件的强大(这个下节讲)所以开始玩Obsidian,想要搞一个符合自己要求的本地知识库再加上AI的加持。也装了几个Obsidian的AI插件,结果发现配置非常复杂,体验不太行,想要顺畅使用的话得看文档,甚至还有看文档都无法结局的恶性Bug,我得搜Github其他人的问题才能搞定。这些插件的作用
- JSP学习
sakoba
学习java
文章目录什么是JSP运行原理JSP基础语法JSP表达式JSP脚本片段JSP声明jsp指令九大内置对象&四大域对象内置对象四大域对象代码JSP标签、JSTL标签、EL表达式EL表达式JSP标签JSTL标签什么是JSPJSP(JavaServerPages)是由SUN公司在1996年6月发布的一种基于Java技术的服务器端编程技术,用于开发动态Web应用。从本质上讲,它是一个简化的Servlet设计。
- OpenCV图像噪点消除五大滤波方法
慕婉0307
opencv基础opencv人工智能计算机视觉
在数字图像处理中,噪点消除是提高图像质量的关键步骤。本文将基于OpenCV库,详细讲解五种经典的图像去噪滤波方法:均值滤波、方框滤波、高斯滤波、中值滤波和双边滤波,并通过丰富的代码示例展示它们的实际应用效果。一、图像噪点与滤波基础1.1常见图像噪声类型高斯噪声:符合正态分布的随机噪声椒盐噪声:随机出现的黑白像素点泊松噪声:光子计数噪声量化噪声:模拟信号数字化过程中产生1.2滤波方法分类滤波类型特点
- 设计模式(策略,工厂,单例,享元,门面)+模板方法
sakoba
设计模式数据库java
文章目录前提策略模式思想实现如何拓展模板方法存在的问题思想实现如何拓展工厂模式实现问题及解决(解耦)配置文件方式使用注解单例模式实现方式1,懒汉式(线程不安全)2,懒汉式(线程安全)3,饿汉式4,双重校验锁机制(面)5,静态内部类6,枚举体现享元模式门面模式前提假设做一个需求,从文件中拿到数据并存在数据库中,文档有多种不同的类型,比如json,excel,csv等等。在做这个去求得在过程中,如何让
- C#区块链共识的3大必杀技:PoW、PoS、DPoS谁才是代码界的“链主”?
墨瑾轩
一起学学C#【二】c#区块链开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣**3大必杀技,让你的代码成为“链主”**必杀技1:工作量证明(PoW)——“算力擂台赛”问题:为什么比特币的“矿工”要疯狂算哈希?答案:因为他们在参与“算力擂台赛”!PoW核心逻辑:
- 从阻塞到异步:Java NIO与AIO的高性能网络编程实战全解析
小张在编程
网络javanio
引言在高并发网络时代,传统BIO的“一个连接一个线程”模式早已力不从心——当万级连接涌来时,服务器线程池瞬间告急,资源耗尽的警报此起彼伏。JavaNIO与AIO的出现,如同为网络编程装上了“多线程调度器”和“异步引擎”:NIO用非阻塞机制化解并发瓶颈,让单线程管理千个连接成为可能;AIO则更进一步,通过事件回调实现真正异步,让程序在I/O等待时不再“干瞪眼”。本文将从原理到实战,带您揭开这两大高级
- C#.NET in、out、ref详解
c#.net
简介在C#中,in、ref和out是用于修改方法参数传递方式的关键字,它们决定了参数是按值传递还是按引用传递,以及参数是否必须在传递前初始化。基本语义对比修饰符传递方式可读写性必须初始化调用前必须赋值典型场景ref引用传递可读可写需先在调用前初始化是修改调用者变量;传大对象避免拷贝in只读引用传递只读(不能赋值)需先在调用前初始化是传递大值类型以避免拷贝out引用传递必须在方法体内赋值调用前可未初
- AIGC领域Prompt工程:原理、方法与行业应用
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶AIGCpromptai
AIGC领域Prompt工程:原理、方法与行业应用关键词:Prompt工程、大语言模型(LLM)、提示设计、少样本学习、AIGC应用、思维链(CoT)、提示优化摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,大语言模型(如GPT-4、LLaMA、通义千问)的性能已达到前所未有的高度。然而,模型的强大能力能否被充分释放,很大程度上依赖于"提示(Prompt)"的设计质量。本文系统解析Prom
- 从指令设计到系统集成:提示词工具链与GPTs插件的效率革命
charles666666
人工智能自然语言处理语言模型知识图谱transformer
一、提示词工程工具链:概念与架构解析1.1为什么需要工具链?大模型交互的本质是“指令设计”,但人工编写提示词存在三大痛点:效率低(重复调试耗时)、质量不稳定(依赖个人经验)、复用性差(场景迁移成本高)。例如,某电商企业要求AI生成500种商品描述时,人工逐条调整提示词需耗费数周,且风格难以统一。工具链的价值在于通过模块化设计与自动化流程解决上述问题。其核心架构包含三个层级:需求解析层:将用户需求拆
- 大语言模型中的思维链提示:解锁高效互动的秘密
t0_54program
大数据与人工智能语言模型人工智能自然语言处理个人开发
在当今的人工智能领域,大语言模型(LLMs)已然成为一颗耀眼的明星,它经过海量训练,能够理解并生成人类语言,在编程等诸多领域助力人们完成日常任务。然而,若想与这些模型实现高效沟通,掌握正确的请求方式至关重要,而思维链提示(Chainofthoughtprompting)便是与LLMs互动时最为高效的技术之一。什么是提示(Prompting)?LLMs基于海量数据集进行训练,以理解并生成类人文本。其
- SELinux 从理论到实践:深入解析与实战指南
智驾
LinuxSELinuxTEELinux安全启动
文章目录引言:为什么需要SELinux?第一部分:SELinux核心理论1.1SELinux的三大核心模型1.2安全上下文(SecurityContext)1.3策略语言与模块化第二部分:实战操作指南2.1SELinux状态管理2.2文件上下文管理2.3服务配置与排错第三部分:高级技巧与最佳实践3.1自定义策略模块开发3.2常见问题与解决方案总结:SELinux的价值与学习路径参考引言:为什么需要
- 【数据标注师】目标跟踪标注
试着
数据标注师目标跟踪人工智能计算机视觉数据标注师目标跟踪标注
目录一、**目标跟踪标注的四大核心挑战**二、**五阶能力培养体系**▶**阶段1:基础规则内化(1-2周)**▶**阶段2:复杂场景处理技能**▶**阶段3:专业工具mastery**▶**阶段4:领域深度专精▶**阶段5:效率突破方案三、**精度控制五大核心技术**四、**质检与错误防御体系**1.**四维质检法**:2.**高频错误防御表**:五、**持续进阶体系**1.**复杂场景专项**
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- Alluxio在数据索引和模型分发中的核心价值与应用
Alluxio
人工智能深度学习机器学习
在当前的技术环境下,搜索、推荐、广告、大模型、自动驾驶等领域的业务依赖于海量数据的处理和复杂模型的训练。这些任务通常涉及从用户行为数据和社交网络数据中提取大量信息,进行模型训练和推理。这一过程需要强大的数据分发能力,尤其是在多个服务器同时拉取同一份数据时,更是考验基础设施的性能。在这样的背景下,AlluxioEnterpriseAI在数据索引与模型分发/部署方面展示了其独特的优势,特别是在处理海量
- 选择Alluxio来解决AI模型训练场景数据访问的五大理由
Alluxio
人工智能AI分布式大数据语言模型
在AI模型训练尤其是大模型领域,存储系统的性能和稳定性直接决定了模型训练、推理、部署任务的效率和成本。随着全球AI行业的爆发带来的数据规模的快速增长,如何高效管理和利用这些数据成为AI模型训练中的一大挑战。AI模型训练场景面临的五大难题1.数据读写性能不足在AI模型训练与推理过程中,数据的高效读写是确保计算效率的关键。然而,随着数据集的急剧增长,存储系统往往无法满足对高速数据传输的需求,导致读写性
- AI算力综述和资料整理
木鱼时刻
人工智能
目录总体介绍计算精度传输协议GPU池化资源调度CUDA技术GPU硬件参考链接总体介绍AI算力是人工智能系统的核心基础设施,涵盖了从计算精度、传输协议到硬件架构的完整技术栈。计算精度混合精度训练原生满血版DeepSeek671B是FP8精度。FP16在训练计算力占比有80-90%,FP32占比10%-20%。大模型训练中通常会用到FP16(半精度浮点数),但并不是只使用FP16,而是采用**混合精度
- 对照原则在临床试验中的应用与挑战
一、对照原则的科学逻辑1.1核心目的1.1.1区分混杂效应通过对照组设置,区分疾病自然进程、安慰剂效应、回归均值现象及非特异性效应等混杂因素,凸显干预措施的真实疗效。1.2统计本质1.2.1真实疗效计算真实疗效=(干预组终点变化-干预组基线)-(对照组终点变化-对照组基线),通过组间比较抵消共同偏倚。二、对照组的五大类型及适用场景2.1安慰剂对照2.1.1构成外观/用法相同的无活性物质。2.1.2
- 重复原则与样本量估计:临床试验的统计引擎
qq_34062333
临床试验统计学
一、重复原则的科学内涵1.1核心目的1.1.1量化随机误差通过足够样本量估计效应值的波动范围,确保结果可重现。1.1.2避免偶然性结论避免因小样本极端结果导致的偶然性结论,确保结论稳健。1.1.3提升外推性覆盖人群异质性,提升研究结果的外推性。1.2统计学本质1.2.1标准误样本量增加,标准误减小,置信区间变窄,精度提高。二、样本量估计的四大核心参数2.1显著性水平(α)2.1.1定义I类错误概率
- 使用大模型预测心力衰竭的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录1.引言背景与意义目标2.术前风险评估与预测数据采集与预处理风险预测模型输出应用3.术中风险实时监测与预警实时数据流处理动态风险预测4.术后恢复与并发症预测恢复轨迹建模并发症防控5.个性化治疗方案制定6.统计分析与模型验证验证方法性能指标7.健康教育与指导方案8.技术架构与实施路径1.引言背景与意义问题现状:心力衰竭(HF)全球患者超千万,中国25岁以上人群患病率1.1%;传统诊疗漏诊率高,预
- 中科亿海微SoM模组——基于FPGA+RSIC-V的计算机板卡
ehiway
fpga开发
基于FPGA+RSIC-V的计算机板卡主芯片使用中科亿海微EQ6HL45-CSG324FPGA芯片和高性能微控制器HPM6880,并集合ADCLHA6958H、6通道数字隔离器SiLM5760、SiLM5763、内存W634GU6QB等器件,板卡实现了大容量配置存储等功能的融合,为模拟信号采集、数字信号处理、逻辑控制等应用提供高性能混合信号处理通用硬件平台。图板卡硬件整体框图图板卡实物图EQ6HL
- 【AI大模型】Spring AI 基于Redis实现对话持久存储详解
小码农叔叔
AI大模型应用到项目实战高手springboot入门到精通项目实战SpringAI会话存储SpringAI会话记忆SpringAI持久化会话SpringAI会话持久化SpringAI会话SpringAI记忆
目录一、前言二、SpringAI会话记忆介绍2.1SpringAI会话记忆概述2.2常用的会话记忆实现方式2.2.1集成数据库持久存储会话实现步骤2.3适用场景三、SpringAI基于内存会话记忆存储3.1本地开发环境准备3.2工程搭建与集成3.2.1添加核心依赖3.3.2添加配置文件3.3.3添加测试接口3.2ChatMemory介绍3.2.1ChatMemory概述3.2.2InMemoryC
- 【AI智能体】Coze 搭建个人旅游规划助手实战详解
小码农叔叔
AI大模型应用到项目实战高手AI智能体实战应用高手Coze制作旅游规划助手Coze制作旅游规划机器人coze搭建旅游助手coze搭建旅游助手机器人coze制作旅游助手coze机器人coze使用详解
目录一、前言二、Coze工作流介绍2.1什么是工作流2.2Coze工作流作用2.3Coze工作流节点介绍2.3.1开始节点2.3.2大模型节点2.3.3插件节点2.3.4知识库节点2.3.5条件节点三、基于Coze搭建旅游规划助手操作过程3.1创建应用3.2创建工作流3.2.1创建工作流3.2.2配置工作流3.2.2.1配置开始节点3.2.2.2增加第一个大模型节点3.2.2.3增加第二个大模型节
- [ACTF2020 新生赛]Include1详细解题思路
櫻九.923
安全
1.点击查看出现了这个2.F12查看源代码3.没有发现没有有用信息时返回上一级查看源代码(要细心查看每一个界面的源代码,去寻找漏洞,顺势找到flag4.发现包含了一个PHP文件,那我们接下来就需要了解相应的知识了PHP伪协议(PHP定义的一种特殊访问资源的方法)⭐️PHP伪协议详解-CSDN博客1.伪协议成功执行需要一些条件在满足条件的情况下根据相应的类型,所对应的方法进行查看2.5.输入相应的编
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><