大数据简介

大数据简介

      • 基本概念
      • 什么是hadoop
      • hdfs整体运行机制

基本概念

1.1《数据处理》
在互联网技术发展到现今阶段,大量日常、工作等事务产生的数据都已经信息化,人类产生的数据量相比以前有了爆炸式的增长,以前的传统的数据处理技术已经无法胜任,需求催生技术,一套用来处理海量数据的软件工具应运而生,这就是大数据!

处理海量数据的核心技术:
海量数据存储:分布式
海量数据运算:分布式

这些核心技术的实现是不需要用户从零开始造轮子的
存储和运算,都已经有大量的成熟的框架来用

存储框架:
HDFS——分布式文件存储系统(HADOOP中的存储框架)
HBASE——分布式数据库系统
KAFKA——分布式消息缓存系统(实时流式数据处理场景中应用广泛)

运算框架:(要解决的核心问题就是帮用户将处理逻辑在很多机器上并行)
MAPREDUCE—— 离线批处理/HADOOP中的运算框架
SPARK —— 离线批处理/实时流式计算 (纯粹的运算框架)
STORM —— 实时流式计算

辅助类的工具(解放大数据工程师的一些繁琐工作):
HIVE —— 数据仓库工具:可以接收sql,翻译成mapreduce或者spark程序运行
FLUME——数据采集
SQOOP——数据迁移
ELASTIC SEARCH —— 分布式的搜索引擎

换个角度说,大数据是:
1、有海量的数据
2、有对海量数据进行挖掘的需求
3、有对海量数据进行挖掘的软件工具(hadoop、spark、storm、flink、tez、impala…)

1.2 大数据在现实生活中的具体应用

据处理的最典型应用:公司的产品运营情况分析

电商推荐系统:基于海量的浏览行为、购物行为数据,进行大量的算法模型的运算,得出各类推荐结论,以供电商网站页面来为用户进行商品推荐

精准广告推送系统:基于海量的互联网用户的各类数据,统计分析,进行用户画像(得到用户的各种属性标签),然后可以为广告主进行有针对性的精准的广告投放

什么是hadoop

hadoop中有3个核心组件:
分布式文件系统:HDFS —— 实现将文件分布式存储在很多的服务器上
分布式运算编程框架:MAPREDUCE —— 实现在很多机器上分布式并行运算
分布式资源调度平台:YARN —— 帮用户调度大量的mapreduce程序,并合理分配运算资源

hdfs整体运行机制

hdfs:分布式文件系统
hdfs有着文件系统共同的特征:
1、有目录结构,顶层目录是: /
2、系统中存放的就是文件
3、系统可以提供对文件的:创建、删除、修改、查看、移动等功能

hdfs跟普通的单机文件系统有区别:
1、单机文件系统中存放的文件,是在一台机器的操作系统中
2、hdfs的文件系统会横跨N多的机器
3、单机文件系统中存放的文件,是在一台机器的磁盘上
4、hdfs文件系统中存放的文件,是落在n多机器的本地单机文件系统中(hdfs是一个基于linux本地文件系统之上的文件系统)

hdfs的工作机制:
1、客户把一个文件存入hdfs,其实hdfs会把这个文件切块后,分散存储在N台linux机器系统中(负责存储文件块的角色:data node)<准确来说:切块的行为是由客户端决定的>

2、一旦文件被切块存储,那么,hdfs中就必须有一个机制,来记录用户的每一个文件的切块信息,及每一块的具体存储机器(负责记录块信息的角色是:name node)

3、为了保证数据的安全性,hdfs可以将每一个文件块在集群中存放多个副本(到底存几个副本,是由当时存入该文件的客户端指定的)

综述:一个hdfs系统,由一台运行了namenode的服务器,和N台运行了datanode的服务器组成!

你可能感兴趣的:(大数据修炼之路)