数据说明:
给定的数据为业务情景数据,所有数据均已进⾏了采样和脱敏处理,字段取值与分布均与真实业务数据不同。提供了时间为 2016-08-03 到 2016-11-30 期间,用户在移动端的行为数据、购物记录和历史借贷信息,及 11 月的总借款金额。 数据集下载地址为:链接: https://pan.baidu.com/s/1hk8hARHxkQcMS8SgABmcHQ 密码: fc7z
文件包括user.csv,order.cav,click.csv,loan.csv,loan_sum.csv。
前言:一般的大数据项目一般都分为两种,一种是批处理一种是流式处理,此次练习批处理使用hive和presto处理,流式处理使用SparkStreaming+kafka来处理
一般情况下我们的user的数据都是存在自己的关系型数据库中,所以这里将 t_user 用户信息到 MySQL 中,我们在从MySQL中将其导入到hdfs上,其他三个文件及,t_click,t_loan 和 t_loan_sum 直接导入到 HDFS 中。
mysql自带csv导入功能所以
先创建数据库和user表
create database jd
use jd
create table t_user (uid INT NOT NULL,
age INT,
sex INT,
active_date varchar(40),
initial varchar(40));
导入数据
LOAD DATA LOCAL INFILE '/home/chs/Documents/t_user.csv'
INTO TABLE t_user
CHARACTER SET utf8
FIELDS TERMINATED BY ','
ENCLOSED BY '"'
LINES TERMINATED BY '\n'
IGNORE 1 ROWS;
利用 Sqoop 将 MySQL 中的 t_user 表导入到 HDFS 中
显示有哪些数据库
sqoop list-databases --connect jdbc:mysql://master:3306 --username root --password ''
//显示下面的几个数据库
information_schema
jd
mysql
performance_schema
显示有哪些表
sqoop list-tables --connect jdbc:mysql://master:3306/jd --username root --password ''
//这里只有一张表
t_user
使用sqoop把MySQL中表t_user数据导入到hdfs的/data/sq目录下
sqoop import --connect jdbc:mysql://master:3306/jd --username root --password '' --table t_user --target-dir /data/sq
出错了
18/08/21 13:44:26 ERROR tool.ImportTool: Import failed: No primary key could be found for table t_user. Please specify one with --split-by or perform a sequential import with '-m 1'.
说是这个表中没有主键。我们可以建表的时候给它设置上主键,也可以使用下面–split-by来指定使用哪个字段分割
sqoop import --connect jdbc:mysql://master:3306/jd --username root --password '' --table t_user --target-dir /data/sq --split-by 'uid'
又出错了
Host 'slave' is not allowed to connect to this MySQL server
Host 'slave2' is not allowed to connect to this MySQL server
错误原因 ,因为我这里的hadoop集群使用了3台虚拟机,slave和slave2没有使用root用户访问MySQL的权限
进入mysql的控制台
use mysql
select host,user,password from user;
+-----------+------+----------+
| host | user | password |
+-----------+------+----------+
| localhost | root | |
| master | root | |
| 127.0.0.1 | root | |
| ::1 | root | |
| localhost | | |
| master | | |
+-----------+------+----------+
可以看到现在只有master有权限,给slave和slave2也设置权限
grant all PRIVILEGES on jd.* to root@'slave' identified by '';
grant all PRIVILEGES on jd.* to root@'slave2' identified by '';
这才执行OK
查看导入后的hdfs上的目录
hdfs dfs -ls /data/sq
-rw-r--r-- 1 chs supergroup 0 2018-08-21 14:06 /data/sq/_SUCCESS
-rw-r--r-- 1 chs supergroup 807822 2018-08-21 14:06 /data/sq/part-m-00000
-rw-r--r-- 1 chs supergroup 818928 2018-08-21 14:06 /data/sq/part-m-00001
-rw-r--r-- 1 chs supergroup 818928 2018-08-21 14:06 /data/sq/part-m-00002
-rw-r--r-- 1 chs supergroup 818964 2018-08-21 14:06 /data/sq/part-m-00003
查看每一部分的数据
hdfs dfs -cat /data/sq
17107,30,1,2016-02-13,5.9746772897
11272,25,1,2016-02-17,5.9746772897
14712,25,1,2016-01-10,6.1534138563
16152,30,1,2016-02-10,5.9746772897
10005,30,1,2015-12-17,5.7227683627
......
OK导入完成 剩下的几个CSV文件直接功过hadoop的put命令上传到hdfs上对应的目录即可。
利用 Presto 分析产生以下结果,并通过 web 方式可视化:
• 各年龄段消费者每日购买商品总价值
• 男女消费者每日借贷金额
我们在使用presto做数据分析的时候,一般是跟hive联合起来使用,先从hive中创建相应的数据表,然后使用presto分析hive中的表。
启动hive
//启动hive的metastore
nohup hive --service metastore >> /home/chs/apache-hive-2.1.1-bin/metastore.log 2>&1 &
//启动hive server
nohup hive --service hiveserver2 >> /home/chs/apache-hive-2.1.1-bin/hiveserver.log 2>&1 &
//启动客户端 beeline 并连接
beeline
beeline> !connect jdbc:hive2://master:10000/default hadoop hadoop
创建用户表
create table if not exists t_user (
uid STRING,
age INT,
sex INT,
active_date STRING,
limit STRING
)ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE;
导入hdfs上的数据
load data inpath '/data/sq' overwrite into table t_user;
创建用户订单表
create table if not exists t_order (
uid STRING,
buy_time STRING,
price DOUBLE,
qty INT,
cate_id INT,
discount DOUBLE
)ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE;
导入hdfs上的数据
load data inpath '/data/t_order.csv' overwrite into table t_order;
创建用户点击表
create table if not exists t_click (
uid STRING,
click_time STRING,
pid INT,
param INT
)ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE;
导入hdfs上的数据
load data inpath '/data/t_click.csv' overwrite into table t_click;
创建借款信息表t_loan
create table if not exists t_loan (
uid STRING,
loan_time STRING,
loan_amount STRING,
plannum INT
)ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE;
导入hdfs上的数据
load data inpath '/data/t_loan.csv' overwrite into table t_loan;
创建月借款总额表t_loan_sum
create table if not exists t_loan_sum (
uid STRING,
month STRING,
loan_sum STRING
)ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE;
导入hdfs上的数据
load data inpath '/data/t_loan_sum.csv' overwrite into table t_loan_sum;
启动Presto
在安装目录下运行 bin/launcher start
运行客户端 bin/presto –server master:8080 –catalog hive –schema default
连接hive !connect jdbc:hive2://master:10000/default hadoop hadoop
开始查询分析
第一题
select t_user.age,t_order.buy_time,sum(t_order.price*t_order.qty-t_order.discount) as sum from t_user join t_order on t_user.uid=t_order.uid group by t_user.age,t_order.buy_time;
部分结果
+-------------+-------------------+----------------------+--+
| t_user.age | j_order.buy_time | sum |
+-------------+-------------------+----------------------+--+
| 20 | 2016-11-17 | 1.7227062320000002 |
| 25 | 2016-10-15 | 5.386111459 |
| 25 | 2016-10-19 | 0.45088435299999996 |
| 25 | 2016-10-20 | 2.8137519620000004 |
| 25 | 2016-10-21 | 3.548087797 |
| 25 | 2016-10-22 | 2.788946585 |
| 25 | 2016-10-26 | 2.469814958 |
| 25 | 2016-10-27 | 0.4795708140000001 |
| 25 | 2016-10-30 | 2.8022007390000003 |
| 25 | 2016-10-31 | 6.995954644 |
......
第二题
select t_user.sex,SUBSTRING(t_loan.loan_time,0,10) as time,sum(t_loan.loan_amount) as sum from t_user join t_loan on t_user.uid=t_loan.uid group by t_user.sex ,SUBSTRING(t_loan.loan_time,0,10);
部分结果
+-------------+-------------+---------------------+--+
| t_user.sex | time | sum |
+-------------+-------------+---------------------+--+
| 1 | 2016-08-03 | 7919.6380018219 |
| 1 | 2016-08-04 | 6786.673292777713 |
| 1 | 2016-08-05 | 7238.370847563002 |
| 1 | 2016-08-06 | 7074.863470141198 |
| 1 | 2016-08-07 | 6235.208871191806 |
| 1 | 2016-08-08 | 5866.736957390908 |
| 1 | 2016-08-09 | 7683.339201321814 |
| 1 | 2016-08-10 | 7154.676993165003 |
| 1 | 2016-08-11 | 7836.102713179016 |
| 1 | 2016-08-12 | 8380.352202798527 |
| 1 | 2016-08-13 | 7324.325793652918 |
| 1 | 2016-08-14 | 5402.735435714206 |
| 1 | 2016-08-15 | 5354.373083991806 |
| 1 | 2016-08-16 | 6928.694087775619 |
| 1 | 2016-08-17 | 6639.536366437292 |
| 2 | 2016-08-04 | 991.838448799499 |
| 2 | 2016-08-05 | 1038.7726705849989 |
| 2 | 2016-08-06 | 1331.7359480245996 |
......
利用 Spark RDD 或 Spark DataFrame 分析产生以下结果:
• 借款金额超过 2000(因为数据做过处理,这里就分析大于5的) 且购买商品总价值超过借款总金额的用户 ID
• 从不买打折产品且不借款的用户 ID
import org.apache.spark.SparkConf;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.StructType;
/**
* Created by chs on 8/23/18.
*/
public class JDAnalysis {
public static void main(String[] args){
String path = "hdfs://master:9000/warehouse";
SparkConf conf = new SparkConf().setAppName("JDAnalysis");
SparkSession spark = SparkSession.builder().config(conf).getOrCreate();
//读取hdfs上的数据
Dataset orderDs = spark.read().csv(path+"/t_order");
Dataset loanDs = spark.read().csv(path+"/t_loan");
//创建order的Schema
StructType orderSchema = new StructType()
.add("uid", "string", false)
.add("buy_time", "string", false)
.add("price", "string", true)
.add("qty", "string", false)
.add("cate_id", "string", false)
.add("discount", "string", false);
//创建loan的Schema
StructType loanSchema = new StructType()
.add("uid", "string", false)
.add("loan_time", "string", false)
.add("loan_amount", "string", false)
.add("plannum", "string", true);
//创建有Schema的dataframe
Dataset orderDf = spark.createDataFrame(orderDs.toJavaRDD(), orderSchema);
Dataset loanDf = spark.createDataFrame(loanDs.toJavaRDD(), loanSchema);
//第一题
loanDf.filter("loan_amount>5")
.join(orderDf,"uid")
.select("uid","loan_amount","price","qty","discount")
.where("(price*qty-discount)>loan_amount")
.show();
//也可以创建一个临时表然后通过sql
// dataFrame.createOrReplaceTempView("loan");
// spark.sql("select uid,loan_amount from loan where loan_amount>5").show();
//第二题
orderDf.filter("discount=0")
.select("uid")
.join(loanDf,orderDf.col("uid").equalTo(loanDf.col("uid")),"left")
.where(loanDf.col("uid").isNull())
.show();
}
}
第五题制造实时数据然后通过SparkStreaming实时分析下一篇在写。