MapReduce(分治算法的应用) 是 Google 大数据处理的三驾马车之一,另外两个是 GFS 和 Bigtable。它在倒排索引、PageRank 计算、网页分析等搜索引擎相关的技术中都有大量的应用。
尽管开发一个 MapReduce 看起来很高深,感觉遥不可及。实际上,万变不离其宗,它的本质就是分治算法思想,分治算法。如何理解分治算法?为什么说 MapRedue 的本质就是分治算法呢?
分治算法的主要思想是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归。将子问题逐个击破(一般是同种方法),将已经解决的子问题合并,最后,算法会层层合并得到原问题的答案。
分:递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题);
治:将这些规模更小的子问题逐个击破;
合:将已解决的子问题逐层合并,最终得出原问题的解;
原问题的计算复杂度随着问题的规模的增加而增加。
原问题能够被分解成更小的子问题。
子问题的结构和性质与原问题一样,并且相互独立,子问题之间不包含公共的子子问题。
原问题分解出的子问题的解可以合并为该问题的解。
def divide_conquer(problem, paraml, param2,...):
# 不断切分的终止条件
if problem is None:
print_result
return
# 准备数据
data=prepare_data(problem)
# 将大问题拆分为小问题
subproblems=split_problem(problem, data)
# 处理小问题,得到子结果
subresult1=self.divide_conquer(subproblems[0],p1,..…)
subresult2=self.divide_conquer(subproblems[1],p1,...)
subresult3=self.divide_conquer(subproblems[2],p1,.…)
# 对子结果进行合并 得到最终结果
result=process_result(subresult1, subresult2, subresult3,...)
通过应用举例分析理解分治算法的原理其实并不难,但是要想灵活应用并在编程中体现这种思想中却并不容易。所以,这里这里用分治算法应用在排序的时候的一个栗子,加深对分治算法的理解。
相关概念:
有序度:表示一组数据的有序程度
逆序度:表示一组数据的无序程度
一般通过计算有序对或者逆序对的个数,来表示数据的有序度或逆序度。
假设我们有 n 个数据,我们期望数据从小到大排列,那完全有序的数据的有序度就是 n ( n − 1 ) / 2 n(n-1)/2 n(n−1)/2,逆序度等于 0;相反,倒序排列的数据的有序度就是 0,逆序度是 n ( n − 1 ) / 2 n(n-1)/2 n(n−1)/2。
vQ:如何编程求出一组数据的有序对个数或者逆序对个数呢?
因为有序对个数和逆序对个数的求解方式是类似的,所以这里可以只思考逆序对(常接触的)个数的求解方法。
方法1
拿数组里的每个数字跟它后面的数字比较,看有几个比它小的。
把比它小的数字个数记作 k,通过这样的方式,把每个数字都考察一遍之后,然后对每个数字对应的 k 值求和
最后得到的总和就是逆序对个数。
这样操作的时间复杂度是 O ( n 2 ) O(n^2) O(n2)(需要两层循环过滤)。那有没有更加高效的处理方法呢?这里尝试套用分治的思想来求数组 A 的逆序对个数。
方法2
首先将数组分成前后两半 A1 和 A2,分别计算 A1 和 A2 的逆序对个数 K1 和 K2
然后再计算 A1 与 A2 之间的逆序对个数 K3。那数组 A 的逆序对个数就等于 K1+K2+K3。
注意使用分治算法其中一个要求是,子问题合并的代价不能太大,否则就起不了降低时间复杂度的效果了。
**如何快速计算出两个子问题 A1 与 A2 之间的逆序对个数呢?这里就要借助归并排序算法了。(这里先回顾一下归并排序思想)**如何借助归并排序算法来解决呢?归并排序中有一个非常关键的操作,就是将两个有序的小数组,合并成一个有序的数组。实际上,在这个合并的过程中,可以计算这两个小数组的逆序对个数了。每次合并操作,我们都计算逆序对个数,把这些计算出来的逆序对个数求和,就是这个数组的逆序对个数了。
题目描述
给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 [n/2] 的元素。
你可以假设数组是非空的,并且给定的数组总是存在众数。
示例 1:
输入: [3,2,3]
输出: 3
示例 2:
输入: [2,2,1,1,1,2,2]
输出: 2
解题思路
确定切分的终止条件
直到所有的子问题都是长度为 1 的数组,停止切分。
准备数据,将大问题切分为小问题
递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回
处理子问题得到子结果,并合并
长度为 1 的子数组中唯一的数显然是众数,直接返回即可。
如果它们的众数相同,那么显然这一段区间的众数是它们相同的值。
如果他们的众数不同,比较两个众数在整个区间内出现的次数来决定该区间的众数
代码
class Solution(object):
def majorityElement2(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
# 【不断切分的终止条件】
if not nums:
return None
if len(nums) == 1:
return nums[0]
# 【准备数据,并将大问题拆分为小问题】
left = self.majorityElement(nums[:len(nums)//2])
right = self.majorityElement(nums[len(nums)//2:])
# 【处理子问题,得到子结果】
# 【对子结果进行合并 得到最终结果】
if left == right:
return left
if nums.count(left) > nums.count(right):
return left
else:
return right
题目描述
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大为6。
解题思路
确定切分的终止条件
直到所有的子问题都是长度为 1 的数组,停止切分。
准备数据,将大问题切分为小问题
递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回
处理子问题得到子结果,并合并
将数组切分为左右区间
对与左区间:从右到左计算左边的最大子序和
对与右区间:从左到右计算右边的最大子序和
由于左右区间计算累加和的方向不一致,因此,左右区间直接合并相加之后就是整个区间的和
最终返回左区间的元素、右区间的元素、以及整个区间(相对子问题)和的最大值
代码
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
# 【确定不断切分的终止条件】
n = len(nums)
if n == 1:
return nums[0]
# 【准备数据,并将大问题拆分为小的问题】
left = self.maxSubArray(nums[:len(nums)//2])
right = self.maxSubArray(nums[len(nums)//2:])
# 【处理小问题,得到子结果】
# 从右到左计算左边的最大子序和
max_l = nums[len(nums)//2 -1] # max_l为该数组的最右边的元素
tmp = 0 # tmp用来记录连续子数组的和
for i in range( len(nums)//2-1 , -1 , -1 ):# 从右到左遍历数组的元素
tmp += nums[i]
max_l = max(tmp ,max_l)
# 从左到右计算右边的最大子序和
max_r = nums[len(nums)//2]
tmp = 0
for i in range(len(nums)//2,len(nums)):
tmp += nums[i]
max_r = max(tmp,max_r)
# 【对子结果进行合并 得到最终结果】
# 返回三个中的最大值
return max(left,right,max_l+ max_r)
题目描述
实现 pow(x, n) ,即计算 x 的 n 次幂函数。
示例 1:
输入: 2.00000, 10
输出: 1024.00000
示例 2:
输入: 2.10000, 3
输出: 9.26100
示例 3:
输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25
说明:
-100.0 < x < 100.0 n 是 32 位有符号整数,其数值范围是$[−2^{31}, 2^{31} − 1] $。
解题思路
确定切分的终止条件
对n不断除以2,并更新n,直到为0,终止切分
准备数据,将大问题切分为小问题
对n不断除以2,更新
处理子问题得到子结果,并合并
x与自身相乘更新x
如果n%2 ==1
将p乘以x之后赋值给p(初始值为1),返回p
最终返回p
代码
class Solution(object):
def myPow(self, x, n):
"""
:type x: float
:type n: int
:rtype: float
"""
# 处理n为负的情况
if n < 0 :
x = 1/x
n = -n
# 【确定不断切分的终止条件】
if n == 0 :
return 1
# 【准备数据,并将大问题拆分为小的问题】
if n%2 ==1:
# 【处理小问题,得到子结果】
p = x * self.myPow(x,n-1)# 【对子结果进行合并 得到最终结果】
return p
return self.myPow(x*x,n/2)