- 吴恩达深度学习笔记(30)-正则化的解释
极客Array
正则化(Regularization)深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。如果你怀疑神经网络过度拟合了数据,即存在高方差问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,这也是非常
- 吴恩达深度学习笔记(24)-为什么要使用深度神经网络?
极客Array
为什么使用深层表示?(Whydeeprepresentations?)我们都知道深度神经网络能解决好多问题,其实并不需要很大的神经网络,但是得有深度,得有比较多的隐藏层,这是为什么呢?我们一起来看几个例子来帮助理解,为什么深度神经网络会很好用。首先,深度网络在计算什么?如果你在建一个人脸识别或是人脸检测系统,深度神经网络所做的事就是,当你输入一张脸部的照片,然后你可以把深度神经网络的第一层,当成一
- 吴恩达深度学习-L1 神经网络和深度学习总结
向来痴_
深度学习人工智能
作业地址:吴恩达《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:吴恩达《深度学习》笔记汇总-知乎(zhihu.com)我的「吴恩达深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com)此处只记录需要注意的点,若想看原笔记请移步。1.1深度学习入门我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
- 神经网络与深度学习 Neural Networks and Deep Learning 课程笔记 第一周
林间得鹿
吴恩达深度学习系列课程笔记深度学习神经网络笔记
神经网络与深度学习NeuralNetworksandDeepLearning课程笔记第一周文章目录神经网络与深度学习NeuralNetworksandDeepLearning课程笔记第一周深度学习简介什么是神经网络使用神经网络进行监督学习为什么神经网络会兴起本文是吴恩达深度学习系列课程的学习笔记。深度学习简介什么是神经网络深度学习一般是指训练神经网络。那么什么是神经网络?课程以房价预测的例子来说明
- 学习笔记1《吴恩达深度学习》Deep Learning
木懋懋
深度学习
P11.1.1欢迎Welcome深度学习改变了传统互联网业务,例如网络搜索和广告,但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康关注,深度学习做得非常好的一个方面就是读取X光图像,到生活中的个性化教育,到精准化农业,甚至到驾驶汽车以及其他一些方面。如果你想要学习深度学习的这些工具,并应用它们来做这些令人窒息的操作,就学习这门课程。在接下来的十年中,我认为我们所有人都有机
- 吴恩达深度学习-学习笔记p1-p6
丢了橘子的夏天
深度学习学习笔记
哔哩哔哩网站视频-[双语字幕]吴恩达深度学习deeplearning.ai网站:up主:mHarvey,视频:[双语字幕]吴恩达深度学习deeplearning.ai一.p11.1欢迎二.p21.2什么是神经网络1.举例:根据面积预测房价假设有六个房子的房屋面积和价格,根据这个数据集,房屋面积预测房价的函数,这些是一个简单的神经网络神经元的功能就是输入面积完成线性运算,取不小于0的值,最后得到预测
- 吴恩达深度学习笔记(15)-浅层神经网络之神经网络概述
极客Array
神经网络概述(NeuralNetworkOverview)从今天开始你将学习如何实现一个神经网络。这里只是一个概述,详细的在后面会讲解,看不懂也没关系,先有个概念,就是前向计算然后后向计算,理解了这个就可以了,有一些公式和表达在后面会详细的讲解。在我们深入学习具体技术之前,我希望快速的带你预览一下后续几天你将会学到的东西。现在我们开始快速浏览一下如何实现神经网络。之前我们讨论了逻辑回归,我们了解了
- 【吴恩达深度学习】— 参数、超参数、正则化
Sunflow007
32.jpg1.参数VS超参数1.1什么是超参数(Hyperparameters)?比如算法中的learningrate(学习率)、iterations(梯度下降法循环的数量)、L(隐藏层数目)、(隐藏层单元数目)、choiceofactivationfunction(激活函数的选择)都需要你来设置,这些数字实际上控制了最后的参数W和b的值,所以它们被称作超参数。实际上深度学习有很多不同的超参数,
- 交并比(Intersection over union)
双木的木
吴恩达深度学习笔记深度学习知识点储备笔记算法机器学习python深度学习计算机视觉
来源:Coursera吴恩达深度学习课程如何判断目标检测算法运作良好呢?接下来,你将了解到并交比(intersectionoverunion)函数,可以用来评价目标检测算法。交并比(loU)函数做的是计算两个边界框交集和并集之比。两个边界框的并集是这个区域,就是属于包含两个边界框区域(绿色阴影表示区域),而交集就是这个比较小的区域(橙色阴影表示区域),那么交并比就是交集的大小,这个橙色阴影面积,然
- 吴恩达深度学习笔记(82)-深度卷积神经网络的发展史
极客Array
为什么要探索发展史(实例分析)?我们首先来看看一些卷积神经网络的实例分析,为什么要看这些实例分析呢?上周我们讲了基本构建,比如卷积层、池化层以及全连接层这些组件。事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络。最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法。实际上在计算机
- 吴恩达深度学习课程作业--C1W2
HELLOTREE1
1.3-Reshapingarraysv=v.reshape((v.shape[0]*v.shape[1],v.shape[2]))#v.shape[0]=a;v.shape[1]=b;v.shape[2]=c
- 吴恩达深度学习学习笔记-7建立神经网络
猪猪2000
吴恩达深度学习学习笔记神经网络深度学习人工智能机器学习
1.训练神经网络训练神经网络时,需要做许多决策。例如,有多少层网络每层含有多少个隐藏单元学习率各层采用哪些激活函数…这些决策无法一次决定好,通常在项目启动时,我们会先有一个初步想法,然后编码,并尝试运行这些代码,再根据结果完善自己的想法,改变策略。2.train/dev/testsets通常把数据分为训练集,验证集,测试集。我们用训练集数据训练模型,用验证集做holdoutcrossvalidat
- 【吴恩达深度学习】Keras tutorial - the Happy House
深海里的鱼(・ω<)★
人工智能机器学习深度学习keras深度学习tensorflow
Kerastutorial-theHappyHouseWelcometothefirstassignmentofweek2.Inthisassignment,youwill:LearntouseKeras,ahigh-levelneuralnetworksAPI(programmingframework),writteninPythonandcapableofrunningontopofsever
- 吴恩达深度学习第二课-第一周笔记及课后编程题
Giraffeee_
吴恩达深度学习深度学习人工智能机器学习
笔记训练_开发_测试集小数据时代训练集/测试集的分配比例大致遵循70%/30%或训练集/开发集(或crossvalidationset)/测试集的分配比例大致遵循60%/20%/20%大数据时代只要开发集能够确定哪一个算法/模型有更好的表现,测试集能够无偏评估模型的性能,就称赋予了开发集、测试集足够的数据量了;训练集将被赋予更大比重的数据量。如:训练集/开发集/测试集的比率为98%/2%/2%注:
- 吴恩达深度学习--神经网络的优化(1)
Kangrant
吴恩达深度学习
1.训练集,验证集,测试集选择最佳的Train/Dev/Testsets非常重要。除此之外,构建神经网络时,需要设置的参数很多:神经网络层数,神经元个数,学习率的大小。激活函数的选择等等。实际上很难第一次就确定好这些参数,大致过程是:先确定初始参数,构建神经网络模型,然后通过代码实现该模型,之后进行试验确定模型的性能。根据性能再不断调整参数,重复上述过程,直到让神经网络模型最优。由上述可知,深度学
- 计划1
JLcucumber
1.吴恩达DL2021(强推|双字)2021版吴恩达深度学习课程Deeplearning.ai_哔哩哔哩_bilibiliPart1神经网络与深度学习(6+19+12+8)共45Part2训练、开发、测试集(14+10+11)共35Part3机器学习策略(13+11)共24Part4计算机视觉(11+14+14+(5+6))共50Part5序列模型(12+10+15)共372.经典网络模型论文ht
- 吴恩达深度学习笔记(50)-超参数训练的实践
极客Array
超参数训练的实践:PandasVSCaviar(Hyperparameterstuninginpractice:Pandasvs.Caviar)到现在为止,你已经听了许多关于如何搜索最优超参数的内容,在结束我们关于超参数搜索的讨论之前,我想最后和你分享一些建议和技巧,关于如何组织你的超参数搜索过程。如今的深度学习已经应用到许多不同的领域,某个应用领域的超参数设定,有可能通用于另一领域,不同的应用领
- 2019年上半年收集到的人工智能迁移学习干货文章
城市中迷途小书童
2019年上半年收集到的人工智能迁移学习干货文章迁移学习全面指南:概念、项目实战、优势、挑战迁移学习:该做的和不该做的事深度学习不得不会的迁移学习TransferLearning谷歌最新的PlaNet对强化学习以及迁移学习的意义及启发迁移学习时间序列分类如何提高强化学习的可靠性?迁移学习之最大分类器差异的无监督域适应吴恩达深度学习笔记(67)-迁移学习(Transferlearning)深度学习不
- 吴恩达深度学习intuition
Karen_Yu_
机器学习
这里是看吴恩达课程的一些记录和联想(因为以前听过,因此不会很细致,只做个人记录)课程链接首先提到trainingset,validationset(devset),testset的分割问题。老师提到,最常用的划分方法传统方法是三七分(也就是training70%,validation+test30%,一般而言validation20%test10%),同时,这也是应对数据集不太大的时候的方法。也可
- 吴恩达深度学习笔记(2)-什么是神经网络(Neural Network)
极客Array
什么是神经网络?(WhatisaNeuralNetwork)我们常常用深度学习这个术语来指训练神经网络的过程。有时它指的是特别大规模的神经网络训练。那么神经网络究竟是什么呢?在这个视频中,会讲解一些直观的基础知识。首先,让我们从一个房价预测的例子开始讲起。假设你有一个数据集,它包含了六栋房子的信息。所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格。这时,你想要拟合一个根据房屋面积预
- 吴恩达深度学习笔记(28)-网络训练验证测试数据集的组成介绍
极客Array
从今天开始我们进入新的一个大方向了,改善深层神经网络:超参数调试、正则化以及优化,首先进入深度学习的一个新层面,先认识下在深度学习中的数据集的分类。之前可能大家已经了解了神经网络的组成的几个部分,那么我们将继续学习如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行,从而使学习算法在合理时间内完成自我学习。训练,验证,测试集(Train/Dev/Testsets)在
- 吴恩达深度学习-序列模型 3.10触发字监测 + 课程总结
prophet__
今天学习的是触发字检测,这个说起来可能有点学术,但是简单来说就是。hey,siri!然后你的手机就会亮起来,这就是触发字检测。首先,关于触发字检测还处于发展阶段,并没有一个以绝对优势取胜的算法。如果我们想建立一个算法,那么我们首先要知道数据集如何进行标记,如果从简单的结果来想,我们可以在每次完成一次触发字之后的那个时间设置为1,其他时间设置为0。但这样做是有一些问题的,因为大部分时间是不会触发的,
- 深度学习记录--矩阵维数
蹲家宅宅
深度学习记录深度学习矩阵人工智能
如何识别矩阵的维数如下图矩阵的行列数容易在前向和后向传播过程中弄错,故写这篇文章来提醒易错点顺便起到日后查表改错的作用本文仅作本人查询参考(摘自吴恩达深度学习笔记)
- 吴恩达深度学习笔记(36)-神经网络的梯度消失/梯度爆炸
极客Array
梯度消失/梯度爆炸(Vanishing/Explodinggradients)训练神经网络,尤其是深度神经所面临的一个问题就是梯度消失或梯度爆炸,也就是你训练神经网络的时候,导数或坡度有时会变得非常大,或者非常小,甚至于以指数方式变小,这加大了训练的难度。这节课,你将会了解梯度消失或梯度爆炸的真正含义,以及如何更明智地选择随机初始化权重,从而避免这个问题。假设你正在训练这样一个极深的神经网络,为了
- 吴恩达深度学习笔记(45)-Adam 优化算法(Adam optimization)
极客Array
Adam优化算法(Adamoptimizationalgorithm)在深度学习的历史上,包括许多知名研究者在内,提出了优化算法,并很好地解决了一些问题,但随后这些优化算法被指出并不能一般化,并不适用于多种神经网络,时间久了,深度学习圈子里的人开始多少有些质疑全新的优化算法,很多人都觉得动量(Momentum)梯度下降法很好用,很难再想出更好的优化算法。所以RMSprop以及Adam优化算法,就是
- 吴恩达深度学习(六)
带刺的小花_ea97
超参数调整第一课:调整过程调整神经网络的过程包含了对许多不同超参数的设置,那么怎么样为这些参数找到比较合适的设定值呢?准则和系统化进行超参数设置的技巧将帮助你更加快速有效的获得合适的超参数。在深度神经网络训练中,面对大量的超参数,包括学习速率α、动量超参数β1、Adam优化算法中的超参数β2和ε、网络层数以及每层网络中隐藏单元的数量、学习率衰减情况下不可能只有单一的学习率、mini-batch的大
- 2023-11-21时间记录
多喝开水少熬夜
学习计划与实际学习
2023-11-21时间记录期望:学Linux听英语课程深度学习阅读书籍,也可以练练字今天干了什么2023-11-21时间记录8:30(下床)10:00(开始学习)学习输出8:30(下床)洗漱煮蛋,9:45出门10:00(开始学习)10:00-11:30英语听力吴恩达深度学习deeplearning.ai+社交间歇休息:吃午饭+锻炼(走圈25min)14:00-15:30:学Linux-thrif
- 吴恩达深度学习Course1-Week(3)
木心
DeepLearning神经网络深度学习机器学习
吴恩达深度学习Course1-Week(3)文章目录吴恩达深度学习Course1-Week(3)一、什么是神经网络NeuralNetwork?(1)由逻辑回归到神经网络(2)神经网络的符号规定(3)向量化Vectorization(4)向量化后伪编程Programing二、激活函数ActiveFunction(1)常用的四种激活函数(2)四种激活函数的导数Derivatives三、梯度下降法Gra
- 吴恩达深度学习Course1-Week(1)(2)
木心
DeepLearning深度学习神经网络机器学习
吴恩达深度学习Course1-Week(1)(2)文章目录吴恩达深度学习Course1-Week(1)(2)一、影响神经网络的性能的因素二、逻辑回归(logisticregression)中的一些符号(Notation)规定三、逻辑回归中的激活函数四、损失函数(lossfunction)与成本函数(costfunction)五、梯度下降法(GradientDescent)六、前向传播(forwar
- 吴恩达深度学习Course2-Week(1)
木心
DeepLearning深度学习机器学习
吴恩达深度学习Course2-Week(1)文章目录一、Train/Dev/Test二、为什么双边导数的定义精度更高?三、机器学习基本方法BasicRecipeforMachineLearning一、Train/Dev/Test交叉验证集(Holdoutcrossvalidationset/Developmentset)与测试集(Testset)最好是同一分布。在一些情况下,没有测试集也没关系,测
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name