- Yolo-v3利用GPU训练make时发生错误:/usr/bin/ld: cannot find -lcuda
徐小妞66666
一.利用GPU训练Yolov3时,首先要修改MakeFile文件,修改格式如下:GPU=1(原来为0)CUDNN=1(原来为0)NVCC=/usr/local/cuda/bin/nvcc(新建,注意自己本机的地址)二.此时make产生错误/usr/bin/ld:cannotfind-lcuda1.查看MakeFile文件找到该行代码:LDFLAGS+=-L/usr/local/cuda/lib64
- 目标检测-YOLOv3
wydxry
深度学习目标检测YOLO深度学习
YOLOv3介绍YOLOv3(YouOnlyLookOnce,Version3)是YOLO系列目标检测模型的第三个版本,相较于YOLOv2有了显著的改进和增强,尤其在检测速度和精度上表现优异。YOLOv3的设计目标是在保持高速的前提下提升检测的准确性和稳定性。下面是对YOLOv3改进和优势的介绍,以及YOLOv3核心部分的代码展示。相比YOLOv2的改进与优势多尺度特征金字塔YOLOv3引入了FP
- 目标检测-YOLOv4
wydxry
深度学习目标检测YOLO目标跟踪
YOLOv4介绍YOLOv4是YOLO系列的第四个版本,继承了YOLOv3的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比YOLOv3,YOLOv4在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。相比YOLOv3的改进与优势改进的Backbone(CSPDarknet-53)YOLOv4使用
- 来了,YoloV5的TensorFlow版开源
半壶雪
开源自从yolov5开源以来,(不管因为啥原因)深受瞩目,我最近用tensorflow实现了其主要部分。可能是第一个纯正的tensorfow2版本,欢迎tryandstar:github.com/LongxingTan…之前在工作中接触过yolov3(跑过demo应该就算接触过了),效果惊艳。我在视觉领域只是个新人(悲伤的是我一个中年人却在哪儿哪儿都TM是新人),能力有限,疏漏难免。从头开始实现,
- YOLO缺陷检测学习笔记(2)
tt555555555555
YOLO缺陷检测学习笔记YOLO学习笔记
YOLO缺陷检测学习笔记(2)残差连接1.**YOLO的残差连接结构**2.**YOLO使用残差连接的目的**3.**YOLO中的残差块**4.**YOLOv3和YOLOv4的残差连接架构**YOLO网络架构概述1.特征提取网络2.预测头(DetectionHead)3.后处理(Post-processing)YOLOv3/v4的改进YOLOv3YOLOv4SoftmaxSoftmax的性质:So
- DNN学习平台(GoogleNet、SSD、FastRCNN、Yolov3)
吾名招财
人工智能MFC界面应用dnnopencv神经网络
DNN学习平台(GoogleNet、SSD、FastRCNN、Yolov3)前言相关介绍1,登录界面:2,主界面:3,部分功能演示如下(1)识别网络图片(2)GoogleNet分类(3)人脸识别(4)SSD目标检测(5)FasterRCNN目标检测资源链接(含源码)前言 还记得上学那会儿刚学完几个深度学习模型的C++简单部署应用,当时特别兴奋,外加那会儿还能自己写界面生成应用程序了,就想着做一个
- YOLO系列目标检测数据集大全_yolo数据集(1)
2401_84187537
程序员YOLO目标检测人工智能
Darknet版YOLOv4猫狗识别训练好的权重文件:https://download.csdn.net/download/zhiqingAI/85541214Darknet版YOLOv3猫狗识别训练好的权重文件:https://download.csdn.net/download/zhiqingAI/85541209DeepSORT-YOLOv5猫狗检测和跟踪+可视化目标运动轨迹yolov7猫狗
- 目标检测 | yolov8 原理和介绍
hero_hilog
目标检测AIYOLO目标检测
相关系列:目标检测|yolov1原理和介绍目标检测|yolov2/yolo9000原理和介绍目标检测|yolov3原理和介绍目标检测|yolov4原理和介绍目标检测|yolov5原理和介绍目标检测|yolov6原理和介绍目标检测|yolov7原理和介绍目标检测|yolov8原理和介绍目标检测|yolov9原理和介绍目标检测|yolov10原理和介绍IEEE链接:https://ieeexplore
- 【计算机视觉面经四】基于深度学习的目标检测算法面试必备(RCNN~YOLOv5)
旅途中的宽~
计算机视觉面经总结计算机视觉深度学习目标检测YOLORCNN
文章目录一、前言二、两阶段目标检测算法2.1RCNN2.2Fast-RCNN2.3FasterR-CNN三、多阶段目标检测算法3.1CascadeR-CNN四、单阶段目标检测算法4.1编码方式4.1.1基于中心坐标4.1.1.1方案14.1.1.2方案24.1.1.3方案34.2YOLOv14.3SSD4.4YOLOv24.5RetinaNet4.6YOLOv34.7YOLOv44.8YOLOv5
- 深度学习||YOLO(You Only Look Once)深度学习的实时目标检测算法(YOLOv1~YOLOv5)
小嘤嘤怪学
深度学习算法目标检测
目录YOLOv1:YOLOv2:YOLOv3:YOLOv4:YOLOv5:总结:YOLO(YouOnlyLookOnce)是一系列基于深度学习的实时目标检测算法。自从2015年首次被提出以来,YOLO系列不断发展,推出了多个版本,包括YOLOv1,YOLOv2,YOLOv3,YOLOv4,和YOLOv5等。下面是对YOLO系列的详解:YOLOv1:提出时间:2015年。主要贡献:将目标检测任务转换
- 挑战杯 YOLOv7 目标检测网络解读
laafeer
python
文章目录0前言1yolov7的整体结构2关键点-backbone关键点-head3训练4使用效果5最后0前言世界变化太快,YOLOv6还没用熟YOLOv7就来了,如果有同学的毕设项目想用上最新的技术,不妨看看学长的这篇文章,学长带大家简单的解读yolov7,目的是对yolov7有个基础的理解。从2015年的YOLOV1,2016年YOLOV2,2018年的YOLOV3,到2020年的YOLOV4、
- yolov3-tiny
HelloWorldQAQ。
CNN模型介绍自动驾驶深度学习神经网络
文章目录一、目标检测简介二、Yolov3-tiny2.1anchorbox2.2NMS算法三、后记一、目标检测简介针对一张图片,根据后续任务的需要,有三个主要层次。一是分类(Classification),即是将图像结构化为某一类别的信息,用事先确定好的类别或实例ID来描述图片,这一任务是最简单、最基础的图像理解任务,也是深度学习模型最先取得突破和实现大规模应用的任务。其中ImageNet是最权威
- YOLO系列详解(YOLOV1-YOLOV3)
X.AI666
深度学习yolo
YOLO算法简介本文主要介绍YOLO算法,包括YOLOv1、YOLOv2/YOLO9000和YOLOv3。YOLO算法作为one-stage目标检测算法最典型的代表,其基于深度神经网络进行对象的识别和定位,运行速度很快,可以用于实时系统。了解YOLO是对目标检测算法研究的一个必须步骤。目标检测思路目标检测属于计算机视觉的一个中层任务,该任务可以细化为目标定位与目标识别两个任务,简单来说,找到图片中
- AI助力农作物自动采摘,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统
Together_CZ
人工智能YOLO
去年十一那会无意间刷到一个视频展示的就是德国机械收割机非常高效自动化地24小时不间断地在超广阔的土地上采摘各种作物,专家设计出来了很多用于采摘不同农作物的大型机械,看着非常震撼,但是我们国内农业的发展还是相对比较滞后的,小的时候拔草是一个人一列蹲在地里就在那埋头拔草,不知道什么时候才能走到地的尽头,小块的分散的土地太多基本上都是只能人工手工来取收割,大点的连片的土地可以用收割机来收割,不过收割机基
- 如何用OpenCV加载Yolov5并使用CUDA加速
geekboys
1背景随着Pytorch、TensorFlow等有效的框架被用来深度的学习开发,各种任务的模型也层出不穷。但是大多的部署往往依赖签名的两个框架,需要前面的两个框架大量的库。而且先前的Yolov3和Yolov4有官方直接支持,可以自接加载weights和cfg文件。部署起来相对来说就很简单,但是最新的Yolov5确实基于Pytorch版本的,这使用Opencv部署起来就稍微的麻烦了。可以这时候我们希
- 在C++上如何使用OpenCV头文件是什么_用OpenCV的dnn模块调用yolov3模型
weixin_39785858
前言在实际应用场景,我们用darknet的GPU版本训练自己的数据,得到权值文件,然后我们可以调用训练的好的模型去实现自己的检测项目。一般情况下,我们可以使用opencv的dnn模块去调用yolov3。下面大致讲解一下如何是实现调用。一、环境准备1、编译好darknet的GPU版本。可参考我的文章https://zhuanlan.zhihu.com/p/1343471762、安装好opencv3.
- C++ OpenCV-dnn模块调用模型进行目标检测 (支持CUDA加速)
枸杞叶儿
经验笔记深度学习神经网络
前言OpenCV4.4开始支持YOLOv4模型的调用,需要使用Opencv的DNN模块。编译安装OpenCV和OpenCV-contrib库步骤,点此链接C++OpenCV调用YOLO模型的完整代码点此下载一、模型加载constexprconstchar*darknet_cfg="../face/yolov3-tiny.cfg";//网络文件constexprconstchar*darknet_w
- Darknet yolov3 Makefile文件解析
未完城
ubuntudeep-learningdarknetlinuxmakefile
文章目录1.darknetMakefile注释2.reference现在搞深度学习都在linux平台,经常遇到gcc手动编译的时候。由于linux平台没有通用的IDE,大家都是靠Makefile配置文件进行make。在学习darknet框架的过程中,决定要顺便搞清楚Makefile的写法和参数配置。Makefile完整的教程网上有很多,我暂时也不打算完整学一遍,仅仅把遇到的都搞懂,下次遇到新的东西
- 【从零开始学习YOLOv3】5. 网络模型的构建
pprpp
前言:之前几篇讲了cfg文件的理解、数据集的构建、数据加载机制和超参数进化机制,本文将讲解YOLOv3如何从cfg文件构造模型。本文涉及到一个比较有用的部分就是bias的设置,可以提升mAP、F1、P、R等指标,还能让训练过程更加平滑。1.cfg文件在YOLOv3中,修改网络结构很容易,只需要修改cfg文件即可。目前,cfg文件支持convolutional,maxpool,unsample,ro
- python相对导入错误,ValueError: attempted relative import beyond top-level package
aminghhhh
pythonpycharm
在yolov3的文件中出现了类似的相对导入错误,同时类似的还有ValueError:attemptedrelativeimportnoparentpackage或者明明存在的.py文件报错说不存在,例如Modulenofound:utilsisnoamodle/XXXisnotamodle。。。这是由于在引入文件的时候相对导入的问题直接说解决方法:将相对导入改为绝对导入1.先右键点击package
- 经典目标检测YOLO系列(三)YOLOv3算法详解
undo_try
#深度学习目标检测YOLOpython
经典目标检测YOLO系列(三)YOLOv3算法详解不论是YOLOv1,还是YOLOv2,都有一个共同的致命缺陷:小目标检测的性能差。尽管YOLOv2使用了passthrough技术将16倍降采样的特征图(即C4特征图)融合到了C5特征图中,但最终的检测仍是在C5尺度的特征图上进行的。为了解决这一问题,YOLO作者做了第3次改进,主要改进如下:使用了更好的主干网络DarkNet-53使用了多级检测与
- 经典目标检测YOLO系列(三)YOLOv3的复现(2)正样本的匹配、损失函数的实现
undo_try
#深度学习目标检测YOLO
经典目标检测YOLO系列(三)YOLOv3的复现(2)正样本的匹配、损失函数的实现我们在之前实现YOLOv2的基础上,加入了多级检测及FPN,快速的实现了YOLOv3的网络架构,并且实现了前向推理过程。经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程我们继续进行YOLOv3的复现。1正样本匹配策略1.1基于先验框的正样本匹配策略官方YOLOv2的正样本匹配思路是根据
- 经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程
undo_try
#深度学习目标检测YOLO人工智能
经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程和之前实现的YOLOv2一样,根据《YOLO目标检测》(ISBN:9787115627094)一书,在不脱离YOLOv3的大部分核心理念的前提下,重构一款较新的YOLOv3检测器,来对YOLOv3有更加深刻的认识。书中源码连接:RT-ODLab:YOLOTutorial1、YOLOv3网络架构1.1DarkNet53主
- keras yolo v3调用笔记本本地摄像头实时监测
A大于_963a
最近在学习yolov3,下载了yolo的keras版本,按照工程里readme中将权重下载,运行Convert后,可以进行yolo的图像检测,图像检测命令:pythonyolo_video.py--image,然后在提示下输入图片路径即可实现本地图片检测。本地视频检测:pythonyolo_video.py--inputxxx.mp4即可实时检测本地视频。然后,想用笔记本的自带摄像头进行实时检测,
- YOLOv3测试和训练
weixin_42103837
python
参考文章:学习YOLO系列的个人总结_boss-dog的博客-CSDN博客windows操作系统上运行ultralytics/yolov3进行目标检测_itsgoodtobebad的专栏-CSDN博客0.环境windows101.下载2.建立虚环境、安装包安装包非常缓慢忘了指定下载源$pipinstall-rrequirements.txt指定下载源pipinstall-rrequirements
- [C#]winform部署yolov7+CRNN实现车牌颜色识别车牌号检测识别
FL1623863129
C#YOLO
【官方框架地址】https://github.com/WongKinYiu/yolov7.git【框架介绍】Yolov7是一种目标检测算法,全称YouOnlyLookOnceversion7。它是继Yolov3和Yolov4之后的又一重要成果,是目标检测领域的一个重要里程碑。Yolov7在算法结构上继承了其前作Yolov3和Yolov4的设计思想,但在许多方面进行了优化和改进。它采用了深度学习技术
- 用python实现yolov3检测工业相机视频
蘑菇的神
python音视频计算机视觉
前言:学习记录环境:windows+pycharm+yolov3相机:海康工业网口相机:MV-CA020-20GC(Gige,彩色,全局)1.网上有很多网络摄像头跑yolo的案例,但是,不行。网络摄像头和工业相机不一样!yolo是能直接检测网络摄像头的视频的(这个我没有试过,因为没有网络摄像头)./darknetdetectordemocfg/coco.datacfg/yolov3.cfgyolo
- 手把手教你用深度学习做物体检测(一): 快速感受物体检测的酷炫
AAI机器之心
深度学习人工智能YOLOcnn机器学习
我们先来看看什么是物体检测,见下图:如上图所示,物体检测就是需要检测出图像中有哪些目标物体,并且框出其在图像中的位置。本篇文章,我将会介绍如何利用训练好的物体检测模型来快速实现上图的效果,这里我们将会用到基于coco数据集训练的yolov3模型,该模型能识别80类物品,具体如下:人自行车汽车摩托车飞机公共汽车火车卡车船红绿灯消防栓停车标志停车收费码表长凳鸟猫狗马羊牛大象熊斑马长颈鹿双肩包雨伞手提包
- 基于树莓派与YOLOv3模型的人体目标检测小车(三)
凌乱533
模型效果:在上文中,我们制作了数据集,并利用数据集进行了模型的训练,利用静态图片和视频对模型的检测效果进行了检验,发现效果还是不错的。imageimage前两张为静态图片检测,后一张为视频检测效果截图。image但是模型要想部署在算力微弱的树莓派上,还需要进行两次模型转化才能运行在NCS上进行前向推理。模型转化:第一次转化:(.weight-->.pb)这里的模型转化OpenVINO给出了官方指南
- YOLOv3(Pytorch版本和Tensorflow版本)学习
南叔先生
机器学习pytorchtensorflow深度学习
一、地址来源YOLOv4最全复现代码合集(含PyTorch/TF/Keras和Caffe等)二、Pytorch版本地址:https://github.com/Tianxiaomo/pytorch-YOLOv4这个地址支持训练RequirementsandDependenciespipinstallnumpy==1.18.2#CPUonlypipinstalltorch==1.4.0+cputorc
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d