复习:数据分析的第一步,加载数据我们已经学习完毕了。当数据展现在我们面前的时候,我们所要做的第一步就是认识他,今天我们要学习的就是了解字段含义以及初步观察数据。
我们学习pandas的基础操作,那么上一节通过pandas加载之后的数据,其数据类型是什么呢?
开始前导入numpy和pandas
import numpy as np
import pandas as pd
#写入代码
dict1={'aa':25,'bb':10}
s1=pd.Series(dict1)
s1
aa 25
bb 10
dtype: int64
#写入代码
dict2={'aa':[25,12],'bb':[10,56]}
s2=pd.DataFrame(dict2)
s2
aa | bb | |
---|---|---|
0 | 25 | 10 |
1 | 12 | 56 |
'''
#我们举的例子
sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
example_1 = pd.Series(sdata)
example_1
'''
'''
#我们举的例子
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002, 2003],'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
example_2 = pd.DataFrame(data)
example_2
'''
#写入代码
df=pd.read_csv('train.csv')
df.head()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
也可以加载上一节课保存的"train_chinese.csv"文件。通过翻译版train_chinese.csv熟悉了这个数据集,然后我们对trian.csv来进行操作
#写入代码
df.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
dtype='object')
#写入代码
df['Cabin'].head(3)
0 NaN
1 C85
2 NaN
Name: Cabin, dtype: object
#写入代码
经过我们的观察发现一个测试集test_1.csv有一列是多余的,我们需要将这个多余的列删去
#写入代码
df2=pd.read_csv('test_1.csv')
df2.head(5)
Unnamed: 0 | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | a | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S | 100 |
1 | 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C | 100 |
2 | 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S | 100 |
3 | 3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S | 100 |
4 | 4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S | 100 |
#写入代码
del df2['a']
df2.head(5)
Unnamed: 0 | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
【思考】还有其他的删除多余的列的方式吗?
# 思考回答
#写入代码
df.drop(['PassengerId','Name','Age','Ticket'],axis=1).head()
Survived | Pclass | Sex | SibSp | Parch | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | male | 1 | 0 | 7.2500 | NaN | S |
1 | 1 | 1 | female | 1 | 0 | 71.2833 | C85 | C |
2 | 1 | 3 | female | 0 | 0 | 7.9250 | NaN | S |
3 | 1 | 1 | female | 1 | 0 | 53.1000 | C123 | S |
4 | 0 | 3 | male | 0 | 0 | 8.0500 | NaN | S |
【思考】对比任务五和任务六,是不是使用了不一样的方法(函数),如果使用一样的函数如何完成上面的不同的要求呢?
【思考回答】
如果想要完全的删除你的数据结构,使用inplace=True,因为使用inplace就将原数据覆盖了,所以这里没有用
表格数据中,最重要的一个功能就是要具有可筛选的能力,选出我所需要的信息,丢弃无用的信息。
下面我们还是用实战来学习pandas这个功能。
#写入代码
df[df['Age']<=10].head()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | 8 | 0 | 3 | Palsson, Master. Gosta Leonard | male | 2.0 | 3 | 1 | 349909 | 21.0750 | NaN | S |
10 | 11 | 1 | 3 | Sandstrom, Miss. Marguerite Rut | female | 4.0 | 1 | 1 | PP 9549 | 16.7000 | G6 | S |
16 | 17 | 0 | 3 | Rice, Master. Eugene | male | 2.0 | 4 | 1 | 382652 | 29.1250 | NaN | Q |
24 | 25 | 0 | 3 | Palsson, Miss. Torborg Danira | female | 8.0 | 3 | 1 | 349909 | 21.0750 | NaN | S |
43 | 44 | 1 | 2 | Laroche, Miss. Simonne Marie Anne Andree | female | 3.0 | 1 | 2 | SC/Paris 2123 | 41.5792 | NaN | C |
#写入代码
midage=df[(df['Age']>10) & (df['Age']<50)]
【提示】了解pandas的条件筛选方式以及如何使用交集和并集操作
#写入代码
midage.reset_index(drop=True)
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
5 | 9 | 1 | 3 | Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) | female | 27.0 | 0 | 2 | 347742 | 11.1333 | NaN | S |
6 | 10 | 1 | 2 | Nasser, Mrs. Nicholas (Adele Achem) | female | 14.0 | 1 | 0 | 237736 | 30.0708 | NaN | C |
7 | 13 | 0 | 3 | Saundercock, Mr. William Henry | male | 20.0 | 0 | 0 | A/5. 2151 | 8.0500 | NaN | S |
8 | 14 | 0 | 3 | Andersson, Mr. Anders Johan | male | 39.0 | 1 | 5 | 347082 | 31.2750 | NaN | S |
9 | 15 | 0 | 3 | Vestrom, Miss. Hulda Amanda Adolfina | female | 14.0 | 0 | 0 | 350406 | 7.8542 | NaN | S |
10 | 19 | 0 | 3 | Vander Planke, Mrs. Julius (Emelia Maria Vande... | female | 31.0 | 1 | 0 | 345763 | 18.0000 | NaN | S |
11 | 21 | 0 | 2 | Fynney, Mr. Joseph J | male | 35.0 | 0 | 0 | 239865 | 26.0000 | NaN | S |
12 | 22 | 1 | 2 | Beesley, Mr. Lawrence | male | 34.0 | 0 | 0 | 248698 | 13.0000 | D56 | S |
13 | 23 | 1 | 3 | McGowan, Miss. Anna "Annie" | female | 15.0 | 0 | 0 | 330923 | 8.0292 | NaN | Q |
14 | 24 | 1 | 1 | Sloper, Mr. William Thompson | male | 28.0 | 0 | 0 | 113788 | 35.5000 | A6 | S |
15 | 26 | 1 | 3 | Asplund, Mrs. Carl Oscar (Selma Augusta Emilia... | female | 38.0 | 1 | 5 | 347077 | 31.3875 | NaN | S |
16 | 28 | 0 | 1 | Fortune, Mr. Charles Alexander | male | 19.0 | 3 | 2 | 19950 | 263.0000 | C23 C25 C27 | S |
17 | 31 | 0 | 1 | Uruchurtu, Don. Manuel E | male | 40.0 | 0 | 0 | PC 17601 | 27.7208 | NaN | C |
18 | 35 | 0 | 1 | Meyer, Mr. Edgar Joseph | male | 28.0 | 1 | 0 | PC 17604 | 82.1708 | NaN | C |
19 | 36 | 0 | 1 | Holverson, Mr. Alexander Oskar | male | 42.0 | 1 | 0 | 113789 | 52.0000 | NaN | S |
20 | 38 | 0 | 3 | Cann, Mr. Ernest Charles | male | 21.0 | 0 | 0 | A./5. 2152 | 8.0500 | NaN | S |
21 | 39 | 0 | 3 | Vander Planke, Miss. Augusta Maria | female | 18.0 | 2 | 0 | 345764 | 18.0000 | NaN | S |
22 | 40 | 1 | 3 | Nicola-Yarred, Miss. Jamila | female | 14.0 | 1 | 0 | 2651 | 11.2417 | NaN | C |
23 | 41 | 0 | 3 | Ahlin, Mrs. Johan (Johanna Persdotter Larsson) | female | 40.0 | 1 | 0 | 7546 | 9.4750 | NaN | S |
24 | 42 | 0 | 2 | Turpin, Mrs. William John Robert (Dorothy Ann ... | female | 27.0 | 1 | 0 | 11668 | 21.0000 | NaN | S |
25 | 45 | 1 | 3 | Devaney, Miss. Margaret Delia | female | 19.0 | 0 | 0 | 330958 | 7.8792 | NaN | Q |
26 | 50 | 0 | 3 | Arnold-Franchi, Mrs. Josef (Josefine Franchi) | female | 18.0 | 1 | 0 | 349237 | 17.8000 | NaN | S |
27 | 52 | 0 | 3 | Nosworthy, Mr. Richard Cater | male | 21.0 | 0 | 0 | A/4. 39886 | 7.8000 | NaN | S |
28 | 53 | 1 | 1 | Harper, Mrs. Henry Sleeper (Myna Haxtun) | female | 49.0 | 1 | 0 | PC 17572 | 76.7292 | D33 | C |
29 | 54 | 1 | 2 | Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkin... | female | 29.0 | 1 | 0 | 2926 | 26.0000 | NaN | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
546 | 854 | 1 | 1 | Lines, Miss. Mary Conover | female | 16.0 | 0 | 1 | PC 17592 | 39.4000 | D28 | S |
547 | 855 | 0 | 2 | Carter, Mrs. Ernest Courtenay (Lilian Hughes) | female | 44.0 | 1 | 0 | 244252 | 26.0000 | NaN | S |
548 | 856 | 1 | 3 | Aks, Mrs. Sam (Leah Rosen) | female | 18.0 | 0 | 1 | 392091 | 9.3500 | NaN | S |
549 | 857 | 1 | 1 | Wick, Mrs. George Dennick (Mary Hitchcock) | female | 45.0 | 1 | 1 | 36928 | 164.8667 | NaN | S |
550 | 859 | 1 | 3 | Baclini, Mrs. Solomon (Latifa Qurban) | female | 24.0 | 0 | 3 | 2666 | 19.2583 | NaN | C |
551 | 861 | 0 | 3 | Hansen, Mr. Claus Peter | male | 41.0 | 2 | 0 | 350026 | 14.1083 | NaN | S |
552 | 862 | 0 | 2 | Giles, Mr. Frederick Edward | male | 21.0 | 1 | 0 | 28134 | 11.5000 | NaN | S |
553 | 863 | 1 | 1 | Swift, Mrs. Frederick Joel (Margaret Welles Ba... | female | 48.0 | 0 | 0 | 17466 | 25.9292 | D17 | S |
554 | 865 | 0 | 2 | Gill, Mr. John William | male | 24.0 | 0 | 0 | 233866 | 13.0000 | NaN | S |
555 | 866 | 1 | 2 | Bystrom, Mrs. (Karolina) | female | 42.0 | 0 | 0 | 236852 | 13.0000 | NaN | S |
556 | 867 | 1 | 2 | Duran y More, Miss. Asuncion | female | 27.0 | 1 | 0 | SC/PARIS 2149 | 13.8583 | NaN | C |
557 | 868 | 0 | 1 | Roebling, Mr. Washington Augustus II | male | 31.0 | 0 | 0 | PC 17590 | 50.4958 | A24 | S |
558 | 871 | 0 | 3 | Balkic, Mr. Cerin | male | 26.0 | 0 | 0 | 349248 | 7.8958 | NaN | S |
559 | 872 | 1 | 1 | Beckwith, Mrs. Richard Leonard (Sallie Monypeny) | female | 47.0 | 1 | 1 | 11751 | 52.5542 | D35 | S |
560 | 873 | 0 | 1 | Carlsson, Mr. Frans Olof | male | 33.0 | 0 | 0 | 695 | 5.0000 | B51 B53 B55 | S |
561 | 874 | 0 | 3 | Vander Cruyssen, Mr. Victor | male | 47.0 | 0 | 0 | 345765 | 9.0000 | NaN | S |
562 | 875 | 1 | 2 | Abelson, Mrs. Samuel (Hannah Wizosky) | female | 28.0 | 1 | 0 | P/PP 3381 | 24.0000 | NaN | C |
563 | 876 | 1 | 3 | Najib, Miss. Adele Kiamie "Jane" | female | 15.0 | 0 | 0 | 2667 | 7.2250 | NaN | C |
564 | 877 | 0 | 3 | Gustafsson, Mr. Alfred Ossian | male | 20.0 | 0 | 0 | 7534 | 9.8458 | NaN | S |
565 | 878 | 0 | 3 | Petroff, Mr. Nedelio | male | 19.0 | 0 | 0 | 349212 | 7.8958 | NaN | S |
566 | 881 | 1 | 2 | Shelley, Mrs. William (Imanita Parrish Hall) | female | 25.0 | 0 | 1 | 230433 | 26.0000 | NaN | S |
567 | 882 | 0 | 3 | Markun, Mr. Johann | male | 33.0 | 0 | 0 | 349257 | 7.8958 | NaN | S |
568 | 883 | 0 | 3 | Dahlberg, Miss. Gerda Ulrika | female | 22.0 | 0 | 0 | 7552 | 10.5167 | NaN | S |
569 | 884 | 0 | 2 | Banfield, Mr. Frederick James | male | 28.0 | 0 | 0 | C.A./SOTON 34068 | 10.5000 | NaN | S |
570 | 885 | 0 | 3 | Sutehall, Mr. Henry Jr | male | 25.0 | 0 | 0 | SOTON/OQ 392076 | 7.0500 | NaN | S |
571 | 886 | 0 | 3 | Rice, Mrs. William (Margaret Norton) | female | 39.0 | 0 | 5 | 382652 | 29.1250 | NaN | Q |
572 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.0000 | NaN | S |
573 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0000 | B42 | S |
574 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0000 | C148 | C |
575 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.7500 | NaN | Q |
576 rows × 12 columns
midage.loc[[100],['Pclass','Sex']]
Pclass | Sex | |
---|---|---|
100 | 3 | female |
【思考】这个reset_index()函数的作用是什么?如果不用这个函数,下面的任务会出现什么情况?
#写入代码
midage.loc[[100,105,108],['Pclass','Name','Sex']]
Pclass | Name | Sex | |
---|---|---|---|
100 | 3 | Petranec, Miss. Matilda | female |
105 | 3 | Mionoff, Mr. Stoytcho | male |
108 | 3 | Rekic, Mr. Tido | male |
【提示】使用pandas提出的简单方式,你可以看看loc方法
对比整体的数据位置,你有发现什么问题吗?那么如何解决?
#写入代码