本文整理自虎牙中间件团队在 Nacos Meetup 的现场分享,阿里巴巴中间件受权发布。
这次分享的是全球 DNS 秒级生效在虎牙的实践,以及由此产生的一些思考,整体上,分为以下5各部分:
- 背景介绍;
- 方案设计和对比;
- 高可用;
- 具体实践和落地;
- 规划;
背景介绍
虎牙用到的基础技术很多,DNS 是其中比较重要的一个环节。
DNS 的解析过程很关键,例如上图中的 DNS 解析器通过一个定位解析追踪到我们的 DNS,再到本地域名服务器迭代解析,经过根域再到.com名,最后到huya.com的根域名,获取最终的解析结果。
在这个过程中, DNS解析是天然的分布式架构,每一层都会有缓存,上一层出现问题挂掉,下一层都会有缓存进行容灾。另外,整个 DNS 协议支持面广,包括手机和 PC,我们用的编程框架里也有 DNS 解析器,服务器也会配 DNS 解析引擎,因此,DNS 在虎牙的基础设施中是很重要的部分。
虎牙的 DNS 的应用现状
虎牙当前主要是依赖于公共的 DNS,相信在座的小伙伴们或多或少都会遇到过下面这些问题:
- 依赖公共 localDNS,解析不稳定,延迟大。
- 记录变更生效时间长,无法及时屏蔽线路和节点异常对业务的影响。例如,权威 DNS 全球各节点数据同步时间不可控,全局生效时间超过10分钟;localDNS 缓存过期时间不可控,部分 localDNS 不遵循TTL时间,缓存时间超过48小时。
- 内部 DNS 功能缺失,无法解决内部服务调用面临挑战。例如,时延大、解析不准、支持多种调度策略。
- 无法满足国外业务的快速发展,虽然一些海外云厂商提供了基于 DNS 的快速扩容方案,以及基于 DNS 的数据库切换方案。
方案设计和对比
基于以上的问题,我们开始重新规划 DNS 的设计。
名字服务架构
整个规划会分三个方面,核心是我们做了「名字服务」的中心点,基于此,可以满足我们的需求。
一方面通过 Nacos Sync,将现有多个注册中心的服务, 同步到「名字服务」中, 通过 DNS 实现不同框架之间的 Rest 服务方式的调用, 实现例如 Eureka,Consul,Taf等框架之间的服务调用。
另一方面,在全球负载均衡的场景下,由于虎牙是以音视频业务为主,而音视频业务对节点的延迟是非常敏感的,所以我们希望一旦出现节点延迟的情况,能立马做切换。
第三个是传统 DNS 的场景, 可以满足容器和物理机的 DNS 需求, 提供本机 Agent 和集群两种方案, 通过缓存和 prefect 大大提高 DNS 解析的可用性和加快生效时间。
对于名字服务的总体设计主要分3部分,接入层需要提供 API,消息通知和 DNS 接入的能力。核心功能需要能在基于现有网络数据,CMDB 和 IP 库的数据基础上,提供灵活的负载均衡能力,全球数据的秒级同步,多个数据源的同步,能对全网服务的健康状态进行监控,及时感知到大范围的节点异常,并且能够及时将节点的屏蔽的信息推送到端上。
最终,我们选择 Nacos 作为名字服务的核心,提供统一的 API ,包括名字注册、变化推送、负载均衡等;Nacos Sync 作为全球集群间数据同步的组件;DNS - F是客户端组件,用于拦截 DNS 请求,实现基于 DNS 的名字服务。
改造前后 DNS 变更生效流程的不同
接下来,我们通过对比看下改造前后 DNS 变更生效流程的差异。
原有 DNS 变更生效流程中,对 DNS 生效时间有影响的是:
Auth DNS:
跨区域、跨国数据同步慢,不稳定。
bind 在数据量比较大的时候,同步比较慢。
Local DNS:
根据 TTL 缓存,过期后才会刷新数据。
部分厂商不遵循 TTL 时间缓存,超过24小时的缓存时间。
服务器:
服务器开启 nscd 做 DNS 缓存。
业务进程:
应用的 DNS 缓存,比如 Java 虚拟机、框架层的 DNS 缓存。
以上四种情况会比较影响 DNS 的变更生效流程,下图是我们现有的 DNS 变更生效流程:
整体上相对简单,只要业务进程这边将自己内部的 DNS 缓存关掉, 通过 DNS-F 进行查询的时候, 会直接到最近的 Nacos 集群拉取最新的服务节点信息, 而且后续节点的变化也会推送到 DNS-F 中, 后续可以直接在缓存中获取最新信息。
国内 Nacos 集群:
集群内通过 raft 协议同步数据,毫秒级别完成同步。
Nacos Sync:
Nacos 推送变化到 Nacos Sync,跨区域、跨国网络差的情况下可能会导致推送结果丢失,或者延迟加大。
Nacos Sync 会主动拉取实例变更,拉取周期和监听的服务数量会影响到变更时效。
DNS - F:
Nacos 会将变更推送到 DNS - F,网络差的情况可能会导致推送结果丢失,或者延迟加大。
DNS - F 会主动拉取实例变更,拉取周期和监听的服务数量会影响到变更时效。
业务进程:
通过应用禁用 DNS 缓存来解决。
核心设计 Nacos
Nacos 有两套推送机制。
一种是通过客户端来选择一个可获节点,比如它第一次拉取的是一个正常节点,这个正常节点就会跟它维护一个订阅关系,后面有变化就会有一个相应的实地变化推送给我。如果当前节点挂掉, 他会通过重连, 在节点列表上,连上一个正常的节点。这时候会有新的 DNS 关系出现。
另一种是通过 SDK 的方式,在服务端寻找可获节点。服务端每个节点之间, 会进行一个可活的探测, 选择其中一个可活节点用户维护这个订阅关系。 当这个节点出现问题, 连接断开后, SDK 重新发送订阅请求,服务端会再次选择另外一个可活的节点来维护这个订阅关系。这就保证整了推送过程不会因为某个节点挂掉而没有推送。
推送的效率方面,主要是用 UDP 的方式,这个效率不像 TCP 消耗那么高。
以上两个方案都比较适合我们目前的场景。
核心组件设计 Nacos Sync
我们选择 Nacos Sync 作为多集群数据同步的组件,主要是从以下4方面进行考虑的。
- 同步粒度:
Nacos Sync 同步数据的时候是以服务为维度, 比较容易做最终一致性处理, 同时可以提供保活的机制,满足节点维持的场景。 数据库通过 Binlog 同步的方式只能局限于事务粒度, 而文件同步只能通过单个文件的粒度, 在服务同步这个维度并不是很合适。
- 可用性方面:
Nacos Sync 作为一个中间件,是以集群方式进行的,传统的数据库和文件方式基本是单进程进行的,可用性方面可能不太满足要求。
- 同步方式方面:
Nacos Sync 通过在服务粒度的全量写入,满足服务注册和 DNS 这两种场景, 不需要额外的事务消耗, 能保证最终一致即可。
- 环形同步:
我们国内有多个可获的节点,希望它们之间的数据可以进行环形同步,每个节点之间是相互备份的,这时候用 Nacos Sync 的话,是支持的。虽然数据库方面,比较经典的是主主同步,但如果同时对一个主件进行更新的话,每一个点进行协助是会有问题的,而且文件方面是不支持的。
Nacos Sync 和开源版本的不同
我们对 Nacos Sync 开源方案上做了几处修改,以更好的适用于现在的场景:
第一,通过配置方式对任务进行分拆。因为在实际应用场景里面,因为 Nacos Sync 的任务达一两万,单机很容易到达瓶颈,所以我们通过配置的方式将这些分片到多台 Nacos Sync 机器上。
第二,通过事件合并和队列控制的方式控制 Nacos 集群的写入量,以保证后端的稳定性。虽然下发事件一秒钟只有一个,但在很多场景中,例如需要 K8s 或者 Taf 进行数据同步的时候,变化的频率是非常高的,这时候通过事件合并,每个服务单独进行一个写入进程。这样通过队列控制的方式可以控制整个 Nacos 集群的写入量。
第三,添加了能支持从K8s 和 Taf 同步数据的功能。后期我们会将这个特性提交给 Nacos,让更多的开发者使用。
核心组件设计 DNS - F
DNS - F是基于 CoreDNS 上开发的,我们扩展了以下 4 个组件:
Nacos 插件:查询 Nacos 服务信息,监听 Nacos 服务变化,并将服务转化为域名,实现以 DNS 协议为基础的服务发现;
Cache 插件:提供域名缓存服务;
Log 插件:将 DNS 解析日志上报到日志服务;
Proxy 插件:代理解析外部域名;
DNS - F 和开源版本的不同
第一,在日志组件里面将日志上传到自己的日志服务。
第二,对缓存功能做了一个增强。一般的缓存功能可能根据 TTL 时间会过期,我们把这个过期时间给去掉了,直接令到缓存永远不会过期,然后通过异步将这个缓存进行刷新。比如 TTL 可能快到到时间了,我们就会主动做一个查询或者推送查询,这样,服务端或者公共 DNS 出现问题的时候,就不会影响到整体服务。
第三,增强了高可用的保障能力。包括进程监控、内部运营和外部运营的探测。另外,原来的开源版本用的是本机部署的方式,我们做成了集群化的部署,解决了服务推送、服务负载均衡方面的问题。
高可用
接下来由我们团队的李志鹏,分享一下虎牙在高可用方面的实践。
周健同学跟大家介绍了项目的背景跟方案设计,我来和大家介绍一下具体的实践和落地,实践过程中的主要关注点是高可用。
全球化部署方案
这是虎牙的一个全球化的部署方案,我们在全球部署了两个大区,分别是国内和国外。这两个大区是指定服务同步的,走的是专线,这样可以保障同步的稳定性。在一个大区内我们又部署了多个接入点,例如在国内大区,我们部署了深圳和无锡两个接入点,这两个节点的数据是互相同步、互为备份,保证在一个集群挂掉下可以切换到另外一个集群。
多个接入点的情况下,我们通过 HttpDNS 实现客户端的就近接入。客户端定期请求 HttpDNS,HttpDNS 能根据地域寻找就近接入点。如果接入点出现故障,我们就直接在HttpDNS 把这个节点给摘除,这样客户端就能快速地切换到另外一个接入点。
接下来讲一下单个集群下的部署方案。
单个集群部署了多个 Nacos 节点,并通过7层负载均衡的方式暴露给外面使用,并且提供了多个 VIP,满足不同线路和区域的接入要求。同时,Nacos Sync 做了分片处理,将同步压力分散到各个分片上,一个分片下我们又部署了多个 Nacos Sync 的节点,以保障多活和高可用。
线上演练
演练的场景是模拟一个单个集群挂了和两个集群都挂了。
从图中可以看到,把深圳的流量切走之后,无锡的流量就涨上去了,然后再把无锡的流量切走,再关闭服务,这样就可以看到两边的流量已经没了。之后,再去恢复两个集群的流量,看一下整个切换过程中对服务的影响。
首先看一下对写入的影响,在单个集群挂了的情况下,是没有任何影响的。如果是两个集群都挂了,写入就会失败。可以看到,这个图有一个波峰,这个波峰就是我们两个集群都挂了的情况下,写入失败延迟加大。
但是切换的整个过程对 DNS-F 是没有任何影响的,延迟保持平稳。此外,在集群重新上线前,我们需要做数据校验,保证集群之间元数据和实例数据的最终一致。
可用性级别方面,我们可以保障:
- 单集群挂掉后不会有影响;
- 双集群挂掉后只会影响域名变更,不影响域名解析;
线上演练数据校验机制
运行过程中,我们也要保证集群间数据的一致性。我们通过全量校验和增量校验两种手段去保证,全量校验方式如下:
- 大区内部做10分钟的全量校验,保证大区内各个集群数据的一致;
- 大区之间做2分钟做一次全量校验,保证大区之间被同步的服务的数据一致性。
增量校验方式如下:
- 从其他数据源同步的数据,通过数据源的时间戳,做增量校验;
- 基于API的写入日志,定期校验写入的内容是否已经全部同步。
DNF - S 高可用
关于 DNS - F 的高可用,我们主要做了以下5个点:
- Agent 的健康状态监测,包括进程存活和是否能正常解析;
- 缓存内部域名,并做持久化处理,保证 Nacos 集群出现问题时不会影响内部域名的解析;
- 提供备用节点,保证在 DNS-F 挂了,或者是 DNS-F 需要升级的情况下,也不会影响到内部域名解析;
- resolv.conf 配置检查,发现127.0.0.1不在配置中会自动添加;
- 限制 Agent 的 CPU 的使用,避免对业务进程造成影响。
具体的实践和落地
实践一:数据库域名改造
之前的数据库是用 IP 方式接入的,在数据库切换的时候,需要通知每个业务方修改配置,重启服务,这样就带来一个问题:整个过程是不可控的,取决于业务方的响应速度,生效时间通常超过十分钟。
提升数据库切换的关键点,第一个就是切换时不需要业务方参与,能在业务方无感知的情况下进行切换;第二个是实例变化能秒级推送到我们的应用,将应用快速切换到一个新的实例上。
大家可以看一下这个图,这是我们现在做的一个改造,图中的 DMX 是虎牙内部的一个数据库管理系统,思路就是把 DMX 和名字服务打通。DMX 会把数据库实例信息以服务的形式注册到名字服务,服务名就是域名。
实际应用过程中,通过这个域名去访问数据库,应用在访问前首先会经过 DNS - F 去做域名的解析,解析的时候是从名字服务查询实例信息,然后把实例的IP返回给应用。这样,应用就能通过 IP 和我们的数据库实例进行连接。
切换的时候,在 DMX 平台修改域名对应的实例信息,并把变更推送到名字服务,名字服务再推送给 DNS-F,应用在下一次解析的时候就能拿到新的实例 IP,达到切换数据库实例的目的。
这套方案落地后,虎牙的数据库切换基本上在10秒钟之内能够完成。
实践二:内部调用使用内部域名
虎牙部分内部系统之间调用是通过7层负载均衡,但是由于没有内部 DNS,需要通过的公共的 LocalDNS 来解析,这就带来一些问题:
问题一:扩缩容的时候要去修改 DNS 记录,整个过程生效时间可能会超过10分钟,故障的节点会影响业务较长的时间。
问题二:公共的 LocalDNS 智能解析不准确,比如无锡的机器可能会解析到深圳的一个接入点,影响接入质量。
问题三:不支持定制化的负载均衡策略,例如同机房、同大区优先的策略,通过公共 LocalDNS 是实现不了的。
如果想要提升内部服务调用质量,一是 DNS 记录变更绕过 LocalDNS,把 DNS 的记录变更直接推到 DNS-F。二是与内部系统打通,从 CMDB 等内部系统获取机器信息,支持多种负载均衡策略。
大家可以看一下上面的图,这个改造和数据库域名的改造思路是一样的,最右上角有一个7层负载管理系统,我们把这个系统和名字服务打通,7层负载管理系统会把域名信息以服务形式注册到名字服务,变更域名记录时直接从7层负载管理系统推送到名字服务,名字服务再推送到 DNS-F,达到快速切换的目的。
如果域名配置了负载均衡策略,名字服务会从 CMDB 获取机器、机房等信息,打标到域名的实例信息。然后,DNS-F 查询名字服务时,会携带 ClientIp,名字服务根据 ClientIp 的CMDB 信息过滤实例列表,返回同机房的实例给 DNS-F,达到同机房优先的目的。
由此带来的效果是:
第一,服务扩缩容能够秒级完成,减少了故障时间。
第二,扩展了 DNS 的负载均衡策略,例如有些业务是需要在不同区域有不同的接入点的,而且不能跨区域调用,之前的 DNS 负载均衡策略是不能满足这个需求的,但在改造之后,我们能根据 CMDB 信息去做同区域调度的负载均衡策略。
第三,业务在接入内部域名之后,延迟会有明显的下降。上图显示的就是某个服务在接入到内部域名之后,延迟出现明显的下降。
另一个落地的效果就是我们对主机上的域名解析的优化。因为我们的 DNS - F 是部署在每台主机上的,然后提供一个缓存的功能。带来的效果就是:
- 平均解析延迟会从之前的200毫秒下降到现在的1毫秒;
-
缓存命中率会从之前的90%上升到99.8%,90%是用 CoreDNS 原生的那个 Cache,99.8%是在这个 Cache 的组件下做了优化之后的效果;
- 解析失败率是从之前的0.1%下降到0%;
这里再总结一下项目落地的技术价值:
第一,提供了基于 DNS 服务发现的能力,消除异构系统之间互相调用的障碍。
第二,填补了没有内部域名解析能力的空白。
第三,解决我们上面说的内部服务调用面临的挑战:延时大、解析不准、不支持多种负载均衡策略、故障牵引慢。
第四,优化外部域名的解析,屏蔽 LocalDNS 的故障。
落地规模是:DNS - F 覆盖率100%,完成 Taf 和 Eureka 注册中心的数据同步。
后续规划
LocalDNS:
解决公共 DNS 节点位置影响域名解析准确性的问题;
解决内部使用公共 DNS 不稳定的问题;
优化内外网解析;
精准调度:
解决全球 DNS 节点生效慢的问题。
本文作者:
周健:GitHub ID @nanamikon,虎牙中间件团队成员,2012年毕业于中山大学,主要负责名字和配置服务,以及虎牙 DNS 和微服务相关的工作。
李志鹏:GitHub ID @lzp0412,虎牙中间件团队成员,主要负责 DNS,以及服务注册与发现、服务治理、Service Mesh 等相关工作。
本文作者:中间件小哥
原文链接
本文为云栖社区原创内容,未经允许不得转载。