在机器学习模型(特别是深度学习模型)的训练过程中,模型是非常容易过拟合的。深度学习模型在不断的训练过程中训练误差会逐渐降低,但测试误差的走势则不一定。
在模型的训练过程中,模型只能利用训练数据来进行训练,模型并不能接触到测试集上的样本。因此模型如果将训练集学的过好,模型就会记住训练样本的细节,导致模型在测试集的泛化效果较差,这种现象称为过拟合(Overfitting)。与过拟合相对应的是欠拟合(Underfitting),即模型在训练集上的拟合效果较差。
如图所示:随着模型复杂度和模型训练轮数的增加,CNN模型在训练集上的误差会降低,但在测试集上的误差会逐渐降低,然后逐渐升高,而我们为了追求的是模型在测试集上的精度越高越好。
导致模型过拟合的情况有很多种原因,其中最为常见的情况是模型复杂度(Model Complexity )太高,导致模型学习到了训练数据的方方面面,学习到了一些细枝末节的规律。
解决上述问题最好的解决方法:构建一个与测试集尽可能分布一致的样本集(可称为验证集),在训练过程中不断验证模型在验证集上的精度,并以此控制模型的训练。
训练集、验证集和测试集分别有不同的作用:
在本次赛题中已经划分为验证集,因此可以直接使用训练集进行训练,并使用验证集进行验证精度(当然你也可以合并训练集和验证集,自行划分验证集)。
这些划分方法是从数据划分方式的角度来讲的,在现有的数据比赛中一般采用的划分方法是留出法和交叉验证法。如果数据量比较大,留出法还是比较合适的。当然任何的验证集的划分得到的验证集都是要保证训练集-验证集-测试集的分布是一致的,所以如果不管划分何种的划分方式都是需要注意的。
这里的分布一般指的是与标签相关的统计分布,比如在分类任务中“分布”指的是标签的类别分布,训练集-验证集-测试集的类别分布情况应该大体一致;如果标签是带有时序信息,则验证集和测试集的时间间隔应该保持一致。
建模需要完成的逻辑结构如下:
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=10,
shuffle=True,
num_workers=10,
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=10,
shuffle=False,
num_workers=10,
)
model = SVHN_Model1()
criterion = nn.CrossEntropyLoss (size_average=False)
optimizer = torch.optim.Adam(model.parameters(), 0.001)
best_loss = 1000.0
for epoch in range(20):
print('Epoch: ', epoch)
train(train_loader, model, criterion, optimizer, epoch)
val_loss = validate(val_loader, model, criterion)
# 记录下验证集精度
if val_loss < best_loss:
best_loss = val_loss
torch.save(model.state_dict(), './model.pt')
其中每个Epoch的训练代码如下:
def train(train_loader, model, criterion, optimizer, epoch):
# 切换模型为训练模式
model.train()
for i, (input, target) in enumerate(train_loader):
c0, c1, c2, c3, c4, c5 = model(data[0])
loss = criterion(c0, data[1][:, 0]) + \
criterion(c1, data[1][:, 1]) + \
criterion(c2, data[1][:, 2]) + \
criterion(c3, data[1][:, 3]) + \
criterion(c4, data[1][:, 4]) + \
criterion(c5, data[1][:, 5])
loss /= 6
optimizer.zero_grad()
loss.backward()
optimizer.step()
其中每个Epoch的验证代码如下:
def validate(val_loader, model, criterion):
# 切换模型为预测模型
model.eval()
val_loss = []
# 不记录模型梯度信息
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
c0, c1, c2, c3, c4, c5 = model(data[0])
loss = criterion(c0, data[1][:, 0]) + \
criterion(c1, data[1][:, 1]) + \
criterion(c2, data[1][:, 2]) + \
criterion(c3, data[1][:, 3]) + \
criterion(c4, data[1][:, 4]) + \
criterion(c5, data[1][:, 5])
loss /= 6
val_loss.append(loss.item())
return np.mean(val_loss)
在Pytorch中模型的保存和加载非常简单,比较常见的做法是保存和加载模型参数:
torch.save(model_object.state_dict(), 'model.pt')
model.load_state_dict(torch.load(' model.pt'))
深度学习原理少但实践性非常强,基本上很多的模型的验证只能通过训练来完成。同时深度学习有众多的网络结构和超参数,因此需要反复尝试。训练深度学习模型需要GPU的硬件支持,也需要较多的训练时间,如何有效的训练深度学习模型逐渐成为了一门学问。
深度学习有众多的训练技巧,比较推荐的阅读链接有:
与传统的机器学习模型不同,深度学习模型的精度与模型的复杂度、数据量、正则化、数据扩增等因素直接相关。所以当深度学习模型处于不同的阶段(欠拟合、过拟合和完美拟合)的情况下,大家可以知道可以什么角度来继续优化模型。
在参加本次比赛的过程中,可以以如下逻辑完成:
本章以深度学习模型的训练和验证为基础,讲解了验证集划分方法、模型训练与验证、模型保存和加载以及模型调参流程。
需要注意的是模型复杂度是相对的,并不一定模型越复杂越好。在有限设备和有限时间下,需要选择能够快速迭代训练的模型。