pytorch记录:seq2seq例子看看这torch怎么玩的

https://blog.csdn.net/nockinonheavensdoor/article/details/82320580

先看看简单例子:

import torch
import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import torch.optim as optim torch.manual_seed(1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • torch.tensor让list成为tensor:
# Create a 3D tensor of size 2x2x2.
T_data = [[[1., 2.], [3., 4.]],
          [[5., 6.], [7., 8.]]]
T = torch.tensor(T_data)
print(T)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 自动求导设requires_grad=True:
# Computation Graphs and Automatic Differentiation
x = torch.tensor([1., 2., 3], requires_grad=True) y = torch.tensor([4., 5., 6], requires_grad=True) z = x + y print(z) print(z.grad_fn) tensor([ 5., 7., 9.]) 0x00000247781E0BE0>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • detach()方法获取z的值,但是不能对获取后的值求导了。
new_z = z.detach()
print(new_z.grad_fn)

None
  • 1
  • 2
  • 3
  • 4
  • 好了,重点来了

Translation with a Sequence to Sequence Network and Attention

from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata import string import re import random import torch import torch.nn as nn from torch import optim import torch.nn.functional as F device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

准备数据:

SOS_token = 0
EOS_token = 1

class lang: def __init__(self, name): self.name = name self.word2index = {} self.word2count = {} self.index2word = {0:'SOS', 1:'EOS'} self.n_words = 2 # Count SOS and EOS def addSentence(self, sentence): for word in sentence.split(): self.addWord(word) def addWord(self, word): if word not in self.word2index: self.word2index[word] = self.n_words self.word2count[word] = 1 self.index2word[self.n_words] = word self.n_words += 1 else: self.word2count[word] += 1 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • Unicode字符转为ASCII,用小写字母表示一切,去掉标点符号:
# Turn a Unicode string to plain ASCII, thanks to
# http://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' ) # Lowercase,trim,remove non-letter characters #re.sub(pattern, repl, string, count=0, flags=0) def normalizeString(s): s = unicodeToAscii(s.lower().strip()) # (re) 匹配括号内的表达式,也表示一个组 # [...] 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k' # \1...\9 匹配第n个分组的内容。 s = re.sub(r"([.!?])", r"\1", s) # [^...] 不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。 s = re.sub(r"[^a-zA-Z.!?]+",r" ", s) return s 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

继续:

# 文件用的英语到其他语言,用reverse标志置换一对这样的数据。
def readlangs(lang1, lang2, reverse= False): print("Reading lines...") #Read the file and split into lines lines = open('data/%s-%s.txt' % (lang1, lang2), encoding='utf-8').\ read().strip().split('\n') # Split every line into pairs and normalize pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines] # Reverse pairs, make lang instances if reverse: pairs = [list(reversed(p)) for p in pairs] input_lang = lang(lang2) output_lang = lang(lang1) else: input_lang = lang(lang1) output_lang = lang(lang2) return input_lang, output_lang, pairs
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

过滤出部分样本:


MAX_LENGTH = 10

eng_prefixes = (
    "i am ", "i m ",
    "he is", "he s ", "she is", "she s", "you are", "you re ", "we are", "we re ", "they are", "they re " ) def filterPair(p): return len(p[0].split(' ')) < MAX_LENGTH and \ len(p[1].split(' ')) < MAX_LENGTH and \ p[1].startswith(eng_prefixes) def filterPairs(pairs): return [ pair for pair in pairs if filterPair(pair)]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • The full process for preparing the data is:

    • Read text file and split into lines, split lines into pairs
    • Normalize text, filter by length and content
    • Make word lists from sentences in pairs
def prepareData(lang1, lang2, reverse= False):
    input_lang, output_lang, pairs = readlangs(lang1,lang2,reverse)
    print("Read %s sentence pairs " % len(pairs)) pairs = filterPairs(pairs) print("Trimmed to %s sentence pairs " % len(pairs)) print("Counting words...") for pair in pairs: input_lang.addSentence(pair[0]) output_lang.addSentence(pair[1]) print("Counted word:") print(input_lang.name,input_lang.n_words) print(output_lang.name, output_lang.n_words) return input_lang, output_lang, pairs input_lang, output_lang, pairs = prepareData('eng','fra',True) print(random.choice(pairs)) Reading lines... Read 135842 sentence pairs Trimmed to 11739 sentence pairs Counting words... Counted word: fra 5911 eng 3965 ['elle chante les dernieres chansons populaires.', 'she is singing the latest popular songs.'] 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

The Seq2Seq Model

  • 允许句子到句子有不同长度和顺序。

The Encoder :

#编码器
class  EncoderRNN(nn.Module): def __init__(self, input_size, hidden_size): super(EncoderRNN, self).__init__() self.hidden_size = hidden_size # 指定embedding矩阵W的大小维度 self.embedding = nn.Embedding(input_size, hidden_size) # 指定gru单元的大小 self.gru = nn.GRU(hidden_size, hidden_size) def forward(self, input, hidden): # 扁平化嵌入矩阵 embedded = self.embedding(input).view(1, 1, -1) print("embedded shape:",embedded.shape) output = embedded output, hidden = self.gru(output, hidden) return output, hidden #全0初始化隐层 def initHidden(self): # 这个初始化维度可以 return torch.zeros(1, 1, self.hidden_size, device=device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

这里的self.gru = nn.GRU(hidden_size, hidden_size)中,hidden_size在后面设置为256

print("embedded shape:",embedded.shape)的结果是: 
embedded shape: torch.Size([1, 1, 256])

所以self.gru(output, hidden)中传递的第一个维度是[1,1,256],被压缩为这样的。


nn.GRU源码:


The Decoder:

  • seq2seq解码器的简化版:指利用encoder的最后输出,称为context vector,
  • context vector 作为decoder的初始化隐层状态值 
class DecoderRNN(nn.Module):
    def self__init__(self, hidden_size, output_size): super(DecoderRNN, self).__init__() self.hidden_size = hidden_size self.embedding = nn.Embedding(output_size,hidden_size) self.gru = nn.GRU(hidden_size, hidden_size) self.out = nn.Linear(hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): output = self.embedding(input).view(1, 1, -1) # 1行X列的shape做relu output = F.relu(output) output, hidden = self.gru(output, hidden) #output[0]应该是shape为(*,*)的矩阵 output = self.softmax(self.out(output[0])) return output, hidden def initHidden(self): return torch.zeros(1, 1, self.hidden_size, device=device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Attention Decoder:

  • 简单的解码器的缺点:把整个句子做编码成一个向量,信息容易丢失,翻译一个词的时候需要追溯之前很长的距离,一般翻译的对应性也没有利用,如翻译第一个词,对应大概率在原句子的第一个位置的信息。
  • encoder的输出向量 会乘以一个attention weights,这个权值用NN来计算完成attn,使用解码器的输入和隐藏状态作为输入。。
  • 因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出)因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出) 
class AttnDecoderRNN(nn.Module):
    def __init__(self, hidden_size, output_size, 
                dropout_p = 0.1, max_length=MAX_LENGTH):
        super(AttnDecoderRNN,self).__init__()
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.dropout_p = dropout_p self.max_length = max_length self.embedding = nn.Embedding(self.output_size, self.hidden_size) self.attn = nn.Linear(self.hidden_size * 2, self.max_length) self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size) self.dropout = nn.Dropout(self.dropout_p) #输入向量的维度是10,隐层的长度是10,默认是一层GRU self.gru = nn.GRU(self.hidden_size, self.hidden_size) self.out = nn.Linear(self.hidden_size, self.output_size) def forward(self, input, hidden, encoder_outputs): embedded = self.embedding(input).view(1,1,-1) embedded = self.dropout(embedded) attn_weights = F.softmax( self.attn(torch.cat((embedded[0],hidden[0]),1)),dim=1) # unsqueeze:在指定的轴上多增加一个维度 attn_applied = torch.bmm(attn_weights.unsqueeze(0), encoder_outputs.unsqueeze(0)) output = torch.cat((embedded[0],attn_applied[0]),1) output = self.attn_combine(output).unsqueeze(0) output = F.relu(output) output, hidden = self.gru(output, hidden) #print("output shape:",output.shape) #print("output[0]:",output[0]) output = F.log_softmax(self.out(output[0]),dim=1) return output , hidden, attn_weights def initHidden(self): return torch.zeros(1, 1, self.hidden_size, device=device) 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

继续准备数据:

def indexesFromSentence(lang, sentence):
    return [lang.word2index[word] for word in sentence.split(' ')] def tensorFromSentence(lang, sentence): indexes = indexesFromSentence(lang, sentence) indexes.append(EOS_token) return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1) def tensorsFromPair(pair): input_tensor = tensorFromSentence(input_lang, pair[0]) target_tensor = tensorFromSentence(output_lang, pair[1]) return (input_tensor, target_tensor)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

训练模型

  • 解码器的第一个输入是SOS符,并且把编码器最后的隐层状态作为解码器的第一隐层状态。
  • “Teacher forcing”指用真实样本数据作为下一步的输入,而不是解码器猜测的数据作为下一步输入。
teacher_forcing_ratio = 0.5


def train(input_tensor, output_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH): # 这的隐层大小封装在encoder中,然后拿过来在train的时候初始化隐层的大小 encoder_hidden = encoder.initHidden() encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() # 第一维度的大小即输入长度 input_length = input_tensor.size(0) output_length = output_tensor.size(0) encoder_outputs = torch.zeros(max_length, encoder.hidden_size,device=device) loss = 0 for ei in range(input_length): encoder_output, encoder_hidden = encoder(input_tensor[ei],encoder_hidden) # [0,0]选取最大数组的第一个元素组里的第一个 encoder_outputs[ei] = encoder_output[0 , 0] if ei == 0 : print("encoder_output[0, 0] shape: ",encoder_outputs[ei].shape) decoder_input = torch.tensor([[SOS_token]], device=device) decoder_hidden = encoder_output # niubi use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False if use_teacher_forcing: # Teacher forcing: Feed the target as the next input for di in range(output_length): decoder_ouput,decoder_hidden,decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs) loss = loss + criterion(decoder_ouput, output_tensor[di]) decoder_input = output_tensor[di] # Teacher forcing else: for di in range(output_length): decoder_output,decoder_hidden,decoder_attention=decoder(decoder_input, decoder_hidden, encoder_outputs) topv ,topi = decoder_output.topk(1) decoder_input= topi.squeeze().detach() # # detach from history as input loss = loss + criterion(decoder_output, output_tensor[di]) if decoder_input.item() == EOS_token: break loss.backward() encoder_optimizer.step() decoder_optimizer.step() return loss.item() / target_length
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

好了,模型准备结束:

import time
import math

def asMinutes(s): m = math.floors(s / 60) s -= m * 60 return "%s(- %s)" % (asMinutes(s), asMinutes(rs)) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

训练过程:

def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01): start = time.time() plot_losses = [] print_loss_total = 0 # Reset every print_every plot_loss_total = 0 # Reset every plot_every encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate) decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate) training_pairs = [tensorsFromPair(random.choice(pairs)) for i in range(n_iters)] criterion = nn.NLLLoss() for iter in range(1, n_iters + 1): training_pair = training_pairs[iter - 1] input_tensor = training_pair[0] target_tensor = training_pair[1] loss = train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion) print_loss_total = loss + print_loss_total plot_loss_total = loss + plot_loss_total if iter % print_every == 0: print_loss_avg = print_loss_total / print_every print_loss_total = 0 print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters), iter, iter / n_iters * 100, print_loss_avg)) if iter % plot_every == 0: plot_loss_avg = plot_loss_total / plot_every plot_losses.append(plot_loss_avg) plot_loss_total = 0 showPlot(plot_losses)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

画图的这段:

import matplotlib.pyplot as plt
plt.switch_backend('agg')
import matplotlib.ticker as ticker import numpy as np def showPlot(points): plt.figure() fig, ax = plt.subplots() # this locator puts ticks at regular intervals loc = ticker.MultipleLocator(base=0.2) ax.yaxis.set_major_locator(loc) plt.plot(points)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

验证的代码:

def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
    with torch.no_grad(): input_tensor = tensorFromSentence(input_lang, sentence) input_length = input_tensor.size()[0] encoder_hidden = encoder.initHidden() encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device) for ei in range(input_length): encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden) encoder_outputs[ei] += encoder_output[0, 0] decoder_input = torch.tensor([[SOS_token]], device=device) # SOS decoder_hidden = encoder_hidden decoded_words = [] decoder_attentions = torch.zeros(max_length, max_length) for di in range(max_length): decoder_output, decoder_hidden, decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs) decoder_attentions[di] = decoder_attention.data topv, topi = decoder_output.data.topk(1) if topi.item() == EOS_token: decoded_words.append('') break else: decoded_words.append(output_lang.index2word[topi.item()]) decoder_input = topi.squeeze().detach() return decoded_words, decoder_attentions[:di + 1]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
def evaluateRandomly(encoder, decoder, n=10): for i in range(n): pair = random.choice(pairs) print('>', pair[0]) print('=', pair[1]) output_words, attentions = evaluate(encoder, decoder, pair[0]) output_sentence = ' '.join(output_words) print('<', output_sentence) print('')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

最后一步:

hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device) trainIters(encoder1, attn_decoder1, 75000, print_every=5000)

先看看简单例子:

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

torch.manual_seed(1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • torch.tensor让list成为tensor:
# Create a 3D tensor of size 2x2x2.
T_data = [[[1., 2.], [3., 4.]],
          [[5., 6.], [7., 8.]]]
T = torch.tensor(T_data)
print(T)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 自动求导设requires_grad=True:
# Computation Graphs and Automatic Differentiation
x = torch.tensor([1., 2., 3], requires_grad=True)
y = torch.tensor([4., 5., 6], requires_grad=True)
z = x + y
print(z)
print(z.grad_fn)

tensor([ 5.,  7.,  9.])
0x00000247781E0BE0>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • detach()方法获取z的值,但是不能对获取后的值求导了。
new_z = z.detach()
print(new_z.grad_fn)

None
  • 1
  • 2
  • 3
  • 4
  • 好了,重点来了

Translation with a Sequence to Sequence Network and Attention

from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import random

import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

准备数据:

SOS_token = 0
EOS_token = 1

class lang:
    def __init__(self, name):
        self.name = name
        self.word2index = {}
        self.word2count = {}
        self.index2word = {0:'SOS', 1:'EOS'}
        self.n_words = 2 # Count SOS and EOS

    def addSentence(self, sentence):
        for word in sentence.split():
            self.addWord(word)

    def addWord(self, word):
        if word not in self.word2index:
            self.word2index[word] = self.n_words
            self.word2count[word] = 1
            self.index2word[self.n_words] = word
            self.n_words += 1
        else:
            self.word2count[word] += 1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • Unicode字符转为ASCII,用小写字母表示一切,去掉标点符号:
# Turn a Unicode string to plain ASCII, thanks to
# http://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
    )

# Lowercase,trim,remove non-letter characters
#re.sub(pattern, repl, string, count=0, flags=0)
def normalizeString(s):
    s = unicodeToAscii(s.lower().strip())
    # (re)  匹配括号内的表达式,也表示一个组
    # [...] 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k'
    # \1...\9   匹配第n个分组的内容。
    s = re.sub(r"([.!?])", r"\1", s)
    # [^...]    不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。
    s = re.sub(r"[^a-zA-Z.!?]+",r" ", s)
    return s
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

继续:

# 文件用的英语到其他语言,用reverse标志置换一对这样的数据。
def readlangs(lang1, lang2, reverse= False):
    print("Reading lines...")

    #Read the file and split into lines
    lines = open('data/%s-%s.txt' % (lang1, lang2), encoding='utf-8').\
    read().strip().split('\n')
    # Split every line into pairs and normalize
    pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]

    # Reverse pairs, make lang instances
    if reverse:
        pairs = [list(reversed(p)) for p in pairs]
        input_lang = lang(lang2)
        output_lang = lang(lang1)
    else:
        input_lang = lang(lang1)
        output_lang = lang(lang2)

    return input_lang, output_lang, pairs
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

过滤出部分样本:


MAX_LENGTH = 10

eng_prefixes = (
    "i am ", "i m ",
    "he is", "he s ",
    "she is", "she s",
    "you are", "you re ",
    "we are", "we re ",
    "they are", "they re "
)

def filterPair(p):
    return len(p[0].split(' ')) < MAX_LENGTH and \
    len(p[1].split(' ')) < MAX_LENGTH and \
    p[1].startswith(eng_prefixes)

def filterPairs(pairs):
    return [ pair for pair in pairs if filterPair(pair)]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • The full process for preparing the data is:

    • Read text file and split into lines, split lines into pairs
    • Normalize text, filter by length and content
    • Make word lists from sentences in pairs
def prepareData(lang1, lang2, reverse= False):
    input_lang, output_lang, pairs = readlangs(lang1,lang2,reverse)
    print("Read %s sentence pairs " % len(pairs))
    pairs = filterPairs(pairs)
    print("Trimmed to %s sentence pairs " % len(pairs))
    print("Counting words...")
    for pair in pairs:
        input_lang.addSentence(pair[0])
        output_lang.addSentence(pair[1])
    print("Counted word:")
    print(input_lang.name,input_lang.n_words)
    print(output_lang.name, output_lang.n_words)
    return input_lang, output_lang, pairs

input_lang, output_lang, pairs = prepareData('eng','fra',True)
print(random.choice(pairs))


Reading lines...
Read 135842 sentence pairs 
Trimmed to 11739 sentence pairs 
Counting words...
Counted word:
fra 5911
eng 3965
['elle chante les dernieres chansons populaires.', 'she is singing the latest popular songs.']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

The Seq2Seq Model

  • 允许句子到句子有不同长度和顺序。

The Encoder :

#编码器
class  EncoderRNN(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(EncoderRNN, self).__init__()
        self.hidden_size = hidden_size

        # 指定embedding矩阵W的大小维度
        self.embedding = nn.Embedding(input_size, hidden_size)
        # 指定gru单元的大小
        self.gru = nn.GRU(hidden_size, hidden_size)

    def forward(self, input, hidden):
        # 扁平化嵌入矩阵
        embedded = self.embedding(input).view(1, 1, -1)
        print("embedded shape:",embedded.shape)
        output = embedded

        output, hidden = self.gru(output, hidden)
        return output, hidden

    #全0初始化隐层
    def initHidden(self):
        # 这个初始化维度可以
        return torch.zeros(1, 1, self.hidden_size, device=device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

这里的self.gru = nn.GRU(hidden_size, hidden_size)中,hidden_size在后面设置为256

print("embedded shape:",embedded.shape)的结果是: 
embedded shape: torch.Size([1, 1, 256])

所以self.gru(output, hidden)中传递的第一个维度是[1,1,256],被压缩为这样的。


nn.GRU源码:


The Decoder:

  • seq2seq解码器的简化版:指利用encoder的最后输出,称为context vector,
  • context vector 作为decoder的初始化隐层状态值 
class DecoderRNN(nn.Module):
    def self__init__(self, hidden_size, output_size):
        super(DecoderRNN, self).__init__()
        self.hidden_size = hidden_size

        self.embedding = nn.Embedding(output_size,hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size)
        self.out = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, input, hidden):
        output = self.embedding(input).view(1, 1, -1)
         # 1行X列的shape做relu
        output = F.relu(output)
        output, hidden = self.gru(output, hidden)
        #output[0]应该是shape为(*,*)的矩阵
        output = self.softmax(self.out(output[0]))
        return output, hidden
    def initHidden(self):
        return torch.zeros(1, 1, self.hidden_size, device=device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Attention Decoder:

  • 简单的解码器的缺点:把整个句子做编码成一个向量,信息容易丢失,翻译一个词的时候需要追溯之前很长的距离,一般翻译的对应性也没有利用,如翻译第一个词,对应大概率在原句子的第一个位置的信息。
  • encoder的输出向量 会乘以一个attention weights,这个权值用NN来计算完成attn,使用解码器的输入和隐藏状态作为输入。。
  • 因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出)因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出) 
class AttnDecoderRNN(nn.Module):
    def __init__(self, hidden_size, output_size, 
                dropout_p = 0.1, max_length=MAX_LENGTH):
        super(AttnDecoderRNN,self).__init__()
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.dropout_p = dropout_p
        self.max_length = max_length

        self.embedding = nn.Embedding(self.output_size, self.hidden_size)
        self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
        self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
        self.dropout = nn.Dropout(self.dropout_p)
        #输入向量的维度是10,隐层的长度是10,默认是一层GRU
        self.gru = nn.GRU(self.hidden_size, self.hidden_size)
        self.out = nn.Linear(self.hidden_size, self.output_size)

    def forward(self, input, hidden, encoder_outputs):
        embedded = self.embedding(input).view(1,1,-1)
        embedded = self.dropout(embedded)

        attn_weights = F.softmax(
            self.attn(torch.cat((embedded[0],hidden[0]),1)),dim=1)
        # unsqueeze:在指定的轴上多增加一个维度
        attn_applied = torch.bmm(attn_weights.unsqueeze(0),
                                encoder_outputs.unsqueeze(0))

        output = torch.cat((embedded[0],attn_applied[0]),1)
        output = self.attn_combine(output).unsqueeze(0)

        output = F.relu(output)
        output, hidden = self.gru(output, hidden)
        #print("output shape:",output.shape)
        #print("output[0]:",output[0])
        output = F.log_softmax(self.out(output[0]),dim=1)
        return output , hidden, attn_weights

    def initHidden(self):
        return torch.zeros(1, 1, self.hidden_size, device=device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

继续准备数据:

def indexesFromSentence(lang, sentence):
    return [lang.word2index[word] for word in sentence.split(' ')]


def tensorFromSentence(lang, sentence):
    indexes = indexesFromSentence(lang, sentence)
    indexes.append(EOS_token)
    return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)


def tensorsFromPair(pair):
    input_tensor = tensorFromSentence(input_lang, pair[0])
    target_tensor = tensorFromSentence(output_lang, pair[1])
    return (input_tensor, target_tensor)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

训练模型

  • 解码器的第一个输入是SOS符,并且把编码器最后的隐层状态作为解码器的第一隐层状态。
  • “Teacher forcing”指用真实样本数据作为下一步的输入,而不是解码器猜测的数据作为下一步输入。
teacher_forcing_ratio = 0.5


def train(input_tensor, output_tensor, encoder, decoder, encoder_optimizer,
          decoder_optimizer, criterion, max_length=MAX_LENGTH):
    # 这的隐层大小封装在encoder中,然后拿过来在train的时候初始化隐层的大小
    encoder_hidden = encoder.initHidden()
    encoder_optimizer.zero_grad()
    decoder_optimizer.zero_grad()
    # 第一维度的大小即输入长度
    input_length = input_tensor.size(0)
    output_length = output_tensor.size(0)

    encoder_outputs = torch.zeros(max_length, encoder.hidden_size,device=device)

    loss = 0

    for ei in range(input_length):
        encoder_output, encoder_hidden = encoder(input_tensor[ei],encoder_hidden)
        # [0,0]选取最大数组的第一个元素组里的第一个
        encoder_outputs[ei] = encoder_output[0 , 0]
        if ei == 0 :
            print("encoder_output[0, 0] shape: ",encoder_outputs[ei].shape)

        decoder_input = torch.tensor([[SOS_token]], device=device)
        decoder_hidden = encoder_output
        # niubi 
        use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False

        if use_teacher_forcing:
            # Teacher forcing: Feed the target as the next input
            for di in range(output_length):
                decoder_ouput,decoder_hidden,decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs)
                loss = loss + criterion(decoder_ouput, output_tensor[di])
                decoder_input = output_tensor[di] # Teacher forcing
        else:
            for di in range(output_length):
                decoder_output,decoder_hidden,decoder_attention=decoder(decoder_input, decoder_hidden, encoder_outputs)
                topv ,topi = decoder_output.topk(1)
                decoder_input=  topi.squeeze().detach() # # detach from history as input


                loss = loss + criterion(decoder_output, output_tensor[di])
                if decoder_input.item() == EOS_token:
                    break  
    loss.backward()
    encoder_optimizer.step()
    decoder_optimizer.step()
    return loss.item() / target_length
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

好了,模型准备结束:

import time
import math

def asMinutes(s):
    m = math.floors(s / 60)
    s -= m * 60
    return "%s(- %s)" % (asMinutes(s), asMinutes(rs))


def timeSince(since, percent):
    now = time.time()
    s = now - since
    es = s / (percent)
    rs = es - s
    return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

训练过程:

def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01):
    start = time.time()
    plot_losses = []
    print_loss_total = 0  # Reset every print_every
    plot_loss_total = 0  # Reset every plot_every

    encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
    decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
    training_pairs = [tensorsFromPair(random.choice(pairs))
                      for i in range(n_iters)]
    criterion = nn.NLLLoss()

    for iter in range(1, n_iters + 1):
        training_pair = training_pairs[iter - 1]
        input_tensor = training_pair[0]
        target_tensor = training_pair[1]

        loss = train(input_tensor, target_tensor, encoder,
                     decoder, encoder_optimizer, decoder_optimizer, criterion)
        print_loss_total = loss + print_loss_total
        plot_loss_total = loss + plot_loss_total 

        if iter % print_every == 0:
            print_loss_avg = print_loss_total / print_every
            print_loss_total = 0
            print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
                                         iter, iter / n_iters * 100, print_loss_avg))

        if iter % plot_every == 0:
            plot_loss_avg = plot_loss_total / plot_every
            plot_losses.append(plot_loss_avg)
            plot_loss_total = 0

    showPlot(plot_losses)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

画图的这段:

import matplotlib.pyplot as plt
plt.switch_backend('agg')
import matplotlib.ticker as ticker
import numpy as np


def showPlot(points):
    plt.figure()
    fig, ax = plt.subplots()
    # this locator puts ticks at regular intervals
    loc = ticker.MultipleLocator(base=0.2)
    ax.yaxis.set_major_locator(loc)
    plt.plot(points)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

验证的代码:

def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
    with torch.no_grad():
        input_tensor = tensorFromSentence(input_lang, sentence)
        input_length = input_tensor.size()[0]
        encoder_hidden = encoder.initHidden()

        encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)

        for ei in range(input_length):
            encoder_output, encoder_hidden = encoder(input_tensor[ei],
                                                     encoder_hidden)
            encoder_outputs[ei] += encoder_output[0, 0]

        decoder_input = torch.tensor([[SOS_token]], device=device)  # SOS

        decoder_hidden = encoder_hidden

        decoded_words = []
        decoder_attentions = torch.zeros(max_length, max_length)

        for di in range(max_length):
            decoder_output, decoder_hidden, decoder_attention = decoder(
                decoder_input, decoder_hidden, encoder_outputs)
            decoder_attentions[di] = decoder_attention.data
            topv, topi = decoder_output.data.topk(1)
            if topi.item() == EOS_token:
                decoded_words.append('')
                break
            else:
                decoded_words.append(output_lang.index2word[topi.item()])

            decoder_input = topi.squeeze().detach()

        return decoded_words, decoder_attentions[:di + 1]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
def evaluateRandomly(encoder, decoder, n=10):
    for i in range(n):
        pair = random.choice(pairs)
        print('>', pair[0])
        print('=', pair[1])
        output_words, attentions = evaluate(encoder, decoder, pair[0])
        output_sentence = ' '.join(output_words)
        print('<', output_sentence)
        print('')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

最后一步:

hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device)

trainIters(encoder1, attn_decoder1, 75000, print_every=5000)

转载于:https://www.cnblogs.com/jfdwd/p/11052581.html

你可能感兴趣的:(pytorch记录:seq2seq例子看看这torch怎么玩的)