C++离散傅里叶变换
一、序言:
该教程基于之前的图像处理类MYCV,是对其的补充。
二、设计目标
对图像进行简单的离散傅里叶变换,并输出生成的频谱图。
三、需要提前掌握的知识
二维傅里叶变换公式:
四、详细步骤
1.首先定义一个方法,该方法对输入的图像进行傅里叶变换
输入:MyImage 源图像
输出:ComplexNu 进行离散傅里叶变换后的复数数组
定义:
static ComplexNumber* Dft2(MyImage const &Scr);
实现:
ComplexNumber* MyCV::Dft2(MyImage const &Scr) { int width = Scr.m_width; int height = Scr.m_height; // 将 scr_data 转化为灰度 MyImage *grayimage = Gray(Scr); unsigned char* gray_data = grayimage->m_data; int gray_bytesPerLine = grayimage->m_bytesPerLine; // 将 gray_data 转化为 double 型,并去掉用于填充的多余空间 double *double_data = new double[width*height]; for(int i=0;i) for(int j=0;j ) { double_data[i*width+j]=(double)gray_data[i*gray_bytesPerLine+j]; } // 对 double_data 进行傅里叶变换 ComplexNumber *dft2_data = new ComplexNumber[width*height]; double fixed_factor_for_axisX = (-2 * PI) / height; // evaluate -i2π/N of -i2πux/N, and store the value for computing efficiency double fixed_factor_for_axisY = (-2 * PI) / width; // evaluate -i2π/N of -i2πux/N, and store the value for computing efficiency for (int u = 0; u ) { for (int v = 0; v ) { for (int x = 0; x ) { for (int y = 0; y ) { double powerX = u * x * fixed_factor_for_axisX; // evaluate -i2πux/N double powerY = v * y * fixed_factor_for_axisY; // evaluate -i2πux/N ComplexNumber cplTemp; cplTemp.m_rl = double_data[y + x*width] * cos(powerX + powerY); // evaluate f(x) * e^(-i2πux/N), which is equal to f(x) * (cos(-i2πux/N)+sin(-i2πux/N)i) according to Euler's formula cplTemp.m_im = double_data[y + x*width] * sin(powerX + powerY); dft2_data[v + u*width] = dft2_data[v + u*width] + cplTemp; } } } } // 返回傅里叶数组 return dft2_data; }
2.为了让傅里叶变换可视化,旭阳对其进行标准化和中性化
输入:ComplexNumber 离散傅里叶变换生成的复数数组
输出:MyImage 可视化后的图像
定义:
static MyImage* Dft22MyImage(ComplexNumber *Scr,int width,int height);
实现:
MyImage* MyCV::Dft22MyImage(ComplexNumber *Scr, int const width, int const height) { // 将傅里叶数组归一化 // 取模 double mold[width*height]; for(int i = 0 ;i) { mold[i] = Scr[i].get_mold(); } // 获取最小值 double min = mold[0]; for(int i = 0;i ) { if(mold[i]<min) min = mold[i]; } // 获取去掉前几大值的最大值 double maxqueue[20] = {0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.},max; for(int i = 0;i ){ if(mold[i]>maxqueue[0]) maxqueue[0] = mold[i]; } for(int j =1;j<20;j++){ for(int i = 0;i ){ if(mold[i]>maxqueue[j]&&mold[i] 1]) maxqueue[j] = mold[i]; } } max = maxqueue[19]; unsigned char *normalized_data = new unsigned char[width*height]; for(int i=0;i ) for(int j=0;j ) { unsigned char t = (unsigned char)((mold[i*width+j]-min)/(max-min)*255); if(t>255) t = 255; normalized_data[i*width+j]=t; } // 将图像中心化 unsigned char* center_data = new unsigned char[width*height]; for (int u = 0; u ) { for (int v = 0; v ) { if ((u<(height / 2)) && (v<(width / 2))) { center_data[v + u*width] = normalized_data[width / 2 + v + (height / 2 + u)*width]; } else if ((u<(height / 2)) && (v >= (width / 2))) { center_data[v + u*width] = normalized_data[(v - width / 2) + (height / 2 + u)*width]; } else if ((u >= (height / 2)) && (v<(width / 2))) { center_data[v + u*width] = normalized_data[(width / 2 + v) + (u - height / 2)*width]; } else if ((u >= (height / 2)) && (v >= (width / 2))) { center_data[v + u*width] = normalized_data[(v - width / 2) + (u - height / 2)*width]; } } } // 向中心化的数组填充空间 int bytesPerLine = (width*8+31)/32*4; unsigned char *dst_data = new unsigned char[bytesPerLine*height]; for(int i=0;i ) for(int j=0;j ) { dst_data[i*bytesPerLine+j] = center_data[i*width+j]; } return new MyImage(dst_data,width,height,MyImage::format::GRAY8); }
至此,离散傅里叶变换的方法实现完成,效果图如下:
如果上述教程或代码中有任何错误,欢迎批评和指证。