- 自然语言处理系列四十》条件随机场CRF》CRF开源工具实战
陈敬雷-充电了么-CEO兼CTO
自然语言处理人工智能aipython深度学习机器人机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列四十条件随机场(CRF)开源工具实战新词发现与短语提取总结自然语言处理系列四十条件随机场(CRF)开源工具实战目前条件随机场最流行的开源工具是CRF++。CRF++工具包最早是针对序列数据分析提出的,是一个可用于分词/连续数
- 【2018-10-02】条件随机场
BigBigFlower
条件随机场:给定随机变量x条件下,随机变量y的马尔科夫随机场。设X和Y是随机变量,P(Y|X)是在给定X的条件下Y的条件概率分布,若随机变量Y构成一个由无向图G=(V,E)表示的马尔科夫随机场,即满足马尔科夫性:w~v(与v连接的所有w)线性链条件随机场线性链条件随机场的参数形式:tk边上的特征函数,sl节点上的特征函数条件随机场的概率计算问题前向-后向算法定义前向向量:递推公式:定义后向向量:前
- 机器学习---概率图模型(隐马尔可夫模型、马尔可夫随机场、条件随机场)
三月七꧁ ꧂
机器学习机器学习人工智能
1.隐马尔可夫模型机器学习最重要的任务是根据已观察到的证据(例如训练样本)对感兴趣的未知变量(例如类别标记)进行估计和推测。概率模型(probabilisticmodel)提供了一种描述框架,将描述任务归结为计算变量的概率分布,在概率模型中,利用已知的变量推测未知变量的分布称为“推断(inference)”,其核心在于基于可观测的变量推测出未知变量的条件分布。生成式:计算联合分布(,,),判别式:
- NLP任务之Named Entity Recognition
sunshine2853
自然语言处理人工智能深度学习
深度学习的实现方法:双向长短期记忆网络(BiLSTM):BiLSTM是一种循环神经网络(RNN)的变体,能够捕捉序列数据中的长期依赖关系。在NER任务中,BiLSTM能有效地处理文本序列,捕捉前后文本的依赖关系。条件随机场(CRF):CRF经常与BiLSTM结合使用,形成BiLSTM-CRF模型。CRF层能够在序列标注任务中提供额外的约束,帮助模型更准确地预测实体标签。变压器(Transforme
- CRF条件随机场学习记录
V丶Chao
深度学习安全研究-威胁情报学习
阅读建议仔细阅读书[1]对应的序列标注章节,理解该方法面向的问题以及相关背景,然后理解基础的概念。引言威胁情报挖掘的相关论文中,均涉及到两部分任务:命名实体识别(NamedEntityRecognition,NER)和关系抽取,大多数网安实现NER的方法,采用比较多的方法包含:BiLstm+CRF或者Bert+CRF。其中条件随机场(conditionalrandomfields,CRF),这个模
- Deeplab系列语义分割模型
CPones
计算机视觉深度学习神经网络
目录一、网络模型1.deeplabv12.deeplabv23.deeplabv34.deeplabv3+二、空洞卷积三、代码实现总结一、网络模型1.deeplabv1深度卷积神经网络(DCNN)和条件随机场(CRF)相结合来解决像素级分类问题,最后一层的CRF提高模型捕捉细节和边缘分割的能力,对于大量使用最大池化和下采样导致分辨率下降的问题,通过空洞卷积来扩大感受野。2.deeplabv2ASP
- NLP系列学习:CRF条件随机场(1)
云时之间
大家好,今天让我们来看看条件随机场,条件随机场是一项大内容,在中文分词里广泛应用,因为我们在之前的文章里将概率图模型和基本的形式语言知识有所了解,当我们现在再去学习条件随机场会容易比较多(在动笔写这篇文章前我也翻阅了很多的博客,发现很多博主上来就讲一大堆核心公式,而之前的铺垫知识都很少提,我觉得这不太好,会让很多人一开始就懵).而我希望在我的这几篇文章尽可能的减少单纯理论知识的复述,而是通过一些实
- 【机器学习】条件随机场
十年一梦实验室
机器学习人工智能
一、马尔可夫随机场1.1概率图模型什么是有向图模型和无向图模型?https://www.jianshu.com/p/dabbc78471d7团、极大团、最大团-简书(jianshu.com)1.2马尔可夫随机场二、条件随机场概述2.1条件随机场简介条件随机场(ConditionalRandomField,简称CRF)是一种用于序列标注(sequencelabeling)的概率模型。它是马尔可夫随机
- 图像分割deeplab系列
TechMasterPlus
图像分割计算机视觉深度学习人工智能
DeepLab系列是谷歌团队提出的一系列语义分割算法。DeepLabv1于2014年推出,并在PASCALVOC2012数据集上取得了分割任务第二名的成绩,随后2017到2018年又相继推出了DeepLabv2,DeepLabv3以及DeepLabv3+。DeepLabv1的两个创新点是空洞卷积(AtrosConvolution)和基于全连接条件随机场(FullyConnectedCRF)。Dee
- 大创项目推荐 深度学习实现语义分割算法系统 - 机器视觉
laafeer
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- 工智能基础知识总结--什么是CRF
北航程序员小C
机器学习专栏深度学习专栏人工智能学习专栏机器学习人工智能深度学习神经网络自然语言处理
什么是CRFCRF是给定随机变量X的条件下,随机变量Y的马尔科夫随机场(概率无向图)。这里主要介绍在线性链上的特殊的条件随机场,称为线性链条件随机场,可用于序列标注等问题。线性链条件随机场如下图所示,输出变量仅与输入变量以及相邻输出变量有连线。CRF的参数化表示CRF通常存在两类特征函数,第一类特征函数是定义在边上的特征函数,称为转移函数,依赖于当前和前一个位置;第二类特征函数是定义在结点的特征函
- 软著项目推荐 深度学习实现语义分割算法系统 - 机器视觉
iuerfee
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- 深度学习实现语义分割算法系统 - 机器视觉 计算机竞赛
Mr.D学长
pythonjava
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- HanLP《自然语言处理入门》笔记--6.条件随机场与序列标注
mantchs
NLP自然语言处理机器学习nlp
文章目录6.条件随机场与序列标注6.1机器学习的模型谱系6.2条件随机场6.3条件随机场工具包6.4HanLP中的CRF++API6.5GitHub笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP6.条件随机场与序列标注本章介绍一种新的序列标注模型条件随机场。这种模型与感知机同属结构化学习大家族,但性能比感知机还要强大。为了厘清该
- 自然语言处理相关词条
beck_zhou
算法研究(数据挖掘机器学习自然语言深度学习搜索引擎)自然语言处理语言
NLP领域自然语言处理计算语言学自然语言理解自然语言生成机器翻译文本分类语音识别语音合成中文分词信息检索信息抽取句法分析问答系统自动摘要拼写检查统计机器翻译[编辑]NLP专题隐马尔科夫模型最大熵模型条件随机场数学之美支持向量机机器学习SRILMMoses知网IRSTLMNLTK[编辑]NLP人物冯志伟俞士汶董振东黄昌宁黄曾阳周明姚天顺刘群宗成庆赵铁军詹卫东常宝宝刘挺王海峰哈工大中文信息处理人物谱中
- 强化学习——基于机器学习_周志华
Pandy Bright
机器学习人工智能支持向量机神经网络深度学习算法
上篇主要介绍了概率图模型,首先从生成式模型与判别式模型的定义出发,引出了概率图模型的基本概念,即利用图结构来表达变量之间的依赖关系;接着分别介绍了隐马尔可夫模型、马尔可夫随机场、条件随机场、精确推断方法以及LDA话题模型:HMM主要围绕着评估/解码/学习这三个实际问题展开论述;MRF基于团和势函数的概念来定义联合概率分布;CRF引入两种特征函数对状态序列进行评价打分;变量消去与信念传播在给定联合概
- deepar,传统概率模型如何和深度学习结合的?
wangmarkqi
深度学习人工智能
由于是在不会打公式,所以只能白话说下自己的认识.深度学习和统计领域一些知识的结合,比如条件随机场crf,再比如这个deepar,都是在损失函数上做文章.deepar预测的不是数据本身,而是数据分布的参数.比如模型预测出价格时间序列的均值和方差,假设分布是正态分布,那么损失函数怎么构造了?deepar预测的不是一个时间点,比如预测7天,那么每天都会预测出一个均值和方差,这一共就是7组模型参数,我们需
- 条件随机场之浅出
杨天超
NLP机器学习
1.随机场当给每个位置中,按照某种分布随机赋予相空间(值空间)的值,其全体就叫做随机场。简单说就是给定一些候选值,然后随机的把这些候选值填入到每个位置。2.概率图模型概率图模型就是用图来表示变量概率的依赖关系,如下图所示我们看到概率图模型主要分为有向图模型和无向图模型。有向图模型如我们之前所介绍过的贝叶斯网络和隐马尔科夫模型;无向图网络如马尔科夫随机场、条件随机场等;3.马尔科夫随机场马尔科夫随机
- 竞赛选题 深度学习实现语义分割算法系统 - 机器视觉
laafeer
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- Task2 bayes_plus
酱油啊_
1.相关概念判别模型:在机器学习领域判别模型是一种对未知数据y与已知数据x之间关系进行建模的方法。判别模型是一种基于概率理论的方法。已知输入变量x,判别模型通过构建条件概率分布P(y|x)预测y。常见的基于判别模型算法有逻辑回归、线性回归、支持向量机、提升方法、条件随机场、人工神经网络、随机森林、感知器举例:要确定一个瓜是好瓜还是坏瓜,用判别模型的方法是从历史数据中学习到模型,然后通过提取这个瓜的
- 第十七章 条件随机场
小酒馆燃着灯
机器学习手写AI深度学习机器学习
文章目录导读概念符号表IOB标记概率无向图模型MRF的因子分解团与最大团有向图模型条件随机场线性链条件随机场特征函数对数线性模型参数化形式简化形式矩阵形式概率计算导读条件随机场是给定一组输入随机变量的条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔可夫随机场。注意这里条件,随机场的对应。整个这一章的介绍思路,和前一章有点像,尤其是学习算法部分,和HMM比主要增加了特征函
- 【深度估计】单目深度估计
暖焱
3D计算机视觉计算机视觉人工智能
文章目录什么是深度估计?什么是视差深度估计与三维重建单目深度估计研究历程单目深度估计方法传统方法基于线索线性透视聚焦/散焦度天气散射阴影纹理遮挡高度运动线索基于物体自身运动基于摄像机的运动基于机器学习参数学习方法开创性工作改进加入语义信息条件随机场(ConditionalRandomField,CRF)非参数学习方法第一个里程的工作进一步完善基于多帧其他非参数学习方法深度学习方法基于有监督的深度学
- Coding-and-Paper-Letter(十八)
G小调的Qing歌
资源整理。这一期Coding内容有点多,所以将论文单独拆成另一篇。Coding:1.利用ggplot2做轨迹方向可视化,从仓库名称看,应该是某次组会的报告。SpatiotemporalRBGUgroupmeetingSep20182.R语言包gstat,比较出名的地统计学的R包,可以提供IDW,多种Kriging的空间插值。gstat3.百度研究院的开源项目NCRF,利用神经网络和条件随机场预测了
- UCAS - AI学院 - 自然语言处理专项课 - 第6讲 - 课程笔记
支锦铭
UCAS-课程笔记人工智能自然语言处理
UCAS-AI学院-自然语言处理专项课-第6讲-课程笔记隐马尔可夫模型与条件随机场马尔可夫模型隐马尔可夫模型隐马尔可夫模型的应用条件随机场及其应用隐马尔可夫模型与条件随机场马尔可夫模型马尔可夫模型描述:如果一个系统有NNN个状态SiS_iSi,随着时间的推移,该系统从某一个状态转移到另一个状态。如果ttt时刻的状态变量为qtq_tqt,则ttt时刻状态值为SjS_jSj的概率取决于前面所有时刻的状
- NBT:快准全!geNomad——宏病毒组鉴定新工具
SHANGHAILINGEN
测序组学
期刊:naturebiotechnology影响因子:46.9发表时间:2023年9月在测序数据中识别可移动遗传元件对了解其多样性、生态学、生物技术应用和对公共健康的影响至关重要。本研究开发了geNomad——可同时识别和注释测序数据中的质粒和病毒序列。geNomad使用227897个标记蛋白图谱的数据集来提供病毒基因组的功能基因注释和分类匹配。geNomad还使用条件随机场模型高精度检测整合到宿
- 条件随机场(Conditional Random Fields, CRF)
静夜寒风
条件随机场(ConditionalRandomFields,CRF)本文翻译自英文博客,原文地址:https://medium.com/ml2vec/overview-of-conditional-random-fields-68a2a20fa541概要CRF是一个判别模型,通常用于序列预测任务。其核心思想是:结合已经预测出的标签进行待预测信息的推测,从而提高模型的预测能力。本文从以下几点介绍CR
- 隐马尔可夫(HMM)/感知机/条件随机场(CRF)----词性标注
mantch
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP7.词性标注7.1词性标注概述什么是词性在语言学上,词性(Par-Of-Speech,Pos)指的是单词的语法分类,也称为词类。同一个类别的词语具有相似的语法性质,所有词性的集合称为词性标注集。不同的语料库采用了不同的词性标注集,一般都含有形容词、动词、名词等常见词性。下图就是Han
- CRF(条件随机场)
gaaraZH
CRF(条件随机场)构建步骤为了建一个条件随机场,我们首先要定义一个特征函数集,每个特征函数都以整个句子s,当前位置i,位置i和i-1的标签为输入。然后为每一个特征函数赋予一个权重,然后针对每一个标注序列l,对所有的特征函数加权求和,必要的话,可以把求和的值转化为一个概率值。用词性标注问题解释CRF给定一个句子s,比如:“我在公园看到一只猫”,正常标注词性的结果如下:“我”:名词“在”:介词“公园
- 梯度下降参数不收敛_数据分析|梯度下降算法
weixin_39622891
梯度下降参数不收敛
OX00统计学习三要素统计学习三要素:模型、策略、算法模型(=假设空间=所有备选模型):决策函数(y=f(x)),条件概率分布,两种形式(一种是判别式模型,一种是生成式模型)策略:确定标准,决定最优标准最重要是确定损失函数:测试值与真实值之间差别的惩罚。算法:如何选择最优模型;OX01常见的最优化算法判别模型:感知机,k近邻,决策树,逻辑回归,支持向量机,条件随机场,最大熵模型。生成模型:朴素贝叶
- 2023年显著性检测论文及代码汇总
看到我请叫我去学java吖
计算机视觉人工智能深度学习
AAAILeNo:AdversarialRobustSalientObjectDetectionNetworkswithLearnableNoiseAbstacrt:目前很少有SOD模型对人类视觉注意力难以察觉的对抗性攻击具有鲁棒性。先前的鲁棒显著性ROSA对预分割的超像素进行重组,通过密集连接的条件随机场CRF对粗糙的显著性图进行细化。与先前工作中依赖预处理和后处理的ROSA不同,本文提出一种轻
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理