高并发缓存常见问题总结

1、缓存穿透
缓存穿透是指请求查询数据,在数据库没有,自然在缓存中也不会有。这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库再查询一遍,然后返回空(相当于进行了两次无用的查询)。
这样请求就绕过缓存直接查数据库,这也是经常提的缓存命中率问题。
比如查询用户信息,每次都会访问DB,如果有人恶意破坏,很可能直接对DB造成影响。

有很多种方法可以有效地解决缓存穿透问题
(1)最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。

(2)另外也有一个更为简单粗暴的方法,如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。
通过这个直接设置的默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访问数据库,这种办法最简单粗暴!

2、缓存失效
如果缓存集中在一段时间内失效,DB的压力凸显。这个没有完美解决办法,但可以分析用户行为,尽量让失效时间点均匀分布。
当发生大量的缓存穿透,例如对某个失效的缓存的大并发访问就造成了缓存雪崩。

3、缓存雪崩
缓存雪崩我们可以简单的理解为:由于原有缓存失效,新缓存未到期间(例如我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃。

缓存失效时的雪崩效应对底层系统的冲击非常可怕!
(1)在并发量不是很大的情况下,可以考虑用加锁或者队列的方式保证来保证不会有大量的线程对数据库一次性进行读写,从而避免失效时大量的并发请求落到底层存储系统上。
(2)还有一个简单方案就时讲缓存失效时间分散开,比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。

4、缓存预热
缓存预热这个应该是一个比较常见的概念,相信很多小伙伴都应该可以很容易的理解,缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。
这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!

解决思路:
(1)直接写个缓存刷新页面,上线时手工操作下;
(2)数据量不大,可以在项目启动的时候自动进行加载;利用Spring BeanPostProcessor 初始化时加载数据到缓存
(3)定时刷新缓存;

5、缓存更新&数据一致
除了缓存服务器自带的缓存失效策略之外(Redis默认的有6中策略可供选择,http://www.redis.cn/topics/lru-cache.html),
一般的流程,开启事务 ——> update DB ——> update cache ——> 提交事务 ——> 返回结果
关键是update cache,如果重试之后还是失败,如果要求DB和Cache强一致,缓存更新失败后一定要抛出异常,让整个事务回滚,避免DB和Cache数据的不一致。
我们在修改数据库后,缓存服务器挂了无法修改缓存,这时候可以将这条数据放到数据库中,同时启动一个异步任务定时去检测缓存服务器是否连接成功,一旦连接成功则从数据库中按顺序取出修改数据,依次进行缓存最新值的修改。

6、缓存降级
当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。
系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。
在进行降级之前要对系统进行梳理,看看系统是不是可以丢卒保帅;从而梳理出哪些必须誓死保护,哪些可降级;比如可以参考日志级别设置预案:
(1)一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;
(2)警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;
(3)错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;
(4)严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。

7、无底洞问题
Facebook的工作人员反应2010年已达到3000个memcached节点,储存数千G的缓存。
他们发现memcached的连接效率下降了,于是添加memcached节点,添加完之后,并没有好转。
这就是缓存无底洞问题,节点数越多性能并没有相应的提升。
缓存无底洞产生的原因:键值数据库或者缓存系统,由于通常采用hash函数将key映射到对应的实例,造成key的分布与业务无关,但是由于数据量、访问量的需求,
需要使用分布式后(无论是客户端一致性哈性、redis-cluster、codis),批量操作比如批量获取多个key(例如redis的mget操作),通常需要从不同实例获取key值,相比于单机批量操作只涉及到一次网络操作,分布式批量操作会涉及到多次网络io。
(1) 客户端一次批量操作会涉及多次网络操作,也就意味着批量操作会随着实例的增多,耗时会不断增大。
(2) 服务端网络连接次数变多,对实例的性能也有一定影响。
更多的机器不代表更多的性能,投入越多不一定产出越多。
随着访问量和数据量越来越大,分布式往往是不可以避免的,如何高效的在分布式缓存/存储系统中批量获取数据是一个难点。

8、总结
实际上在使用缓存的过程中还有很多各种各样的问题,不可能枚举所有场景,相对来说以上问题更更常见。
正式业务场景往往很复杂,应用场景不同,方法和解决方案也不同,具体解决方案要根据实际情况来确定!

你可能感兴趣的:(知识管理,系统架构)