线程中的生产者/消费者场景

生产者-消费者问题可以说是线程中最基础,最经典的场景了。它把并发编程中涉及到的一些常见概念都披露了出来,可以说是线程入门绕不开的场景。什么是'生产者-消费者问题'呢,通俗的定义就是:
在指定容量的容器中,同时存在两种对象对容器进行生产或者消费的动作,由于容器的容量有限,使得"生产"不能太多(太多没有意义,容器装不下),“消费”不能无限(容器中不一定含有那么多消费量)。具体详情可以参见生产者消费者问题。

在Java的线程模型中,我总结了对于这一问题的3种处理模式,可以分别比较一下。

1. 普通模式 synchronized+notify+await

这种模式应该最为普遍,不需要了解JDK1.5以后的相关线程类工具,直接使用内置关键字synchronized保证线程访问的同步性,同时使用继承至Object对象的wait,notify方法可以根据业务需求控制线程的实际访问权限。详情如下,这里业务场景是:一个盘子一次只能装一个鸡蛋,分别有放鸡蛋的线程和取鸡蛋的线程对盘子进行存取操作。

public class Plate {


    // 容器
    private List eggs = new ArrayList();


    // 取鸡蛋的业务逻辑
    public synchronized void getEgg() {
        while (eggs.size() == 0) {
            try {
                wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        Egg e = eggs.get(0);
        eggs.clear();
        System.out.println(">>>>>>>>>>get egg:" + e.getName());
        notify();
    }


    // 放鸡蛋的业务逻辑
    public synchronized void putEgg(Egg egg) {
        while (eggs.size() != 0) {
            try {
                wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        eggs.add(egg);
        System.out.println(">>>>>>>>>>put egg:" + egg.getName());
        notify();
    }

    // 生产者线程
   static class PutThread implements Runnable{

       private  Plate plate;

       PutThread(Plate plate) {
           this.plate = plate;
       }

       @Override
        public void run() {
           plate.putEgg(new Egg("egg[" + RandomUtils.nextInt(10) + "]"));
        }
    }

    //消费者线程
    static  class GetThread implements Runnable{
        private  Plate plate;

        GetThread(Plate plate) {
            this.plate = plate;
        }

        @Override
        public void run() {
               plate.getEgg();
        }
    }


    static class Egg {
        private String name;
        String getName() {
            return name;
        }
        void setName(String name) {
            this.name = name;
        }

        Egg(String name) {
            this.name = name;
        }
    }


    public static void main(String [] args){
        Plate p = new Plate();
        while(true)  {
            new Thread(new PutThread(p)).start();
            new Thread(new GetThread(p)).start();
        }

    }

}

2. 巧妙模式 Semaphore

Semaphore 是JDK5推出线程工具类之一,JDK5推出的一系列线程工具类大大简化了并发编程,覆盖了一些常见的业务场景,后面我会有篇文章单独讲讲这些工具类。
下面看看如何用Semaphore 进行生产者消费者问题的解决思路。

public class NewPlate {

    private Semaphore fullSema = new Semaphore(10); // 定义容器的最大容量条件
    private Semaphore emptySema = new Semaphore(0);// 定义容器的最小容量条件
    private Semaphore mutex = new Semaphore(1);// 这个非常重要,用来控制 消费/生产逻辑一次只有一个线程来访问,说白了就是模拟Synchronized的语义。
    
    private ArrayList list = new ArrayList();

    public void set(Object data) {
        try {
            // 先判断是否满了,语义就是wait()
            fullSema.acquire();

            // 保证一次只有一个线程访问,语义就是synchronized
            mutex.acquire();
            System.out.printf("=====before set , current size:%d\n", list.size());
            list.add(data);
            TimeUnit.SECONDS.sleep(1);
            System.out.printf("=====after set , current size:%d\n", list.size());
            mutex.release();
            // 为空条件释放一个,语义就是notify()
            emptySema.release();

        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    public Object get() {
        Object ret = null;
        try {
            emptySema.acquire();
            mutex.acquire();
            System.out.printf(">>>>>>before get , current size:%d\n", list.size());
            ret = list.remove(0);
            TimeUnit.SECONDS.sleep(4);
            System.out.printf(">>>>>>after get, current size:%d\n", list.size());
            mutex.release();
            fullSema.release();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return ret;
    }

    public static void main(String[] args) {

        final NewPlate newPlate = new NewPlate();
        Thread setThread = new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    newPlate.set(new Object());
                }
            }
        });
        Thread getThead = new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    newPlate.get();
                }
            }
        });

        setThread.start();
        getThead.start();


    }

}
 
 

3. 高阶模式 Lock + Condition

Lock 提供了与synchronized相似的语义,但是功能更为强大,我个人认为这种模式从语义上更好理解,更类似人类的语言逻辑。

public class BoundedBuffer {

    
    private int maxSize;// 容器的容量
    private LinkedList buffer;  // 容器

    private Lock lock;// 锁,用来加锁 生产/消费逻辑,保证一次只有一个线程访问
    private Condition notFull;//  非满条件,在容量已满的情况下,控制生产者继续生产
    private Condition notEmpty;// 非空条件,在容量是空的情况下,控制消费线程继续消费

    BoundedBuffer() {
        maxSize = 5;
        buffer = new LinkedList();
        lock = new ReentrantLock();
        notFull = lock.newCondition();
        notEmpty = lock.newCondition();
    }

    public void set(Object data) {
        lock.lock();
        try {
            // 容量已满,则生产者等待
            while (buffer.size() == maxSize) {
                notFull.await();
            }
            buffer.offer(data);
            TimeUnit.SECONDS.sleep(2);
            System.out.printf("set %s, size:%d\n", Thread.currentThread().getName(), buffer.size());

            // 生产完毕,提醒所有消费者可以消费了
            notEmpty.signalAll();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public Object get() {
        lock.lock();
        Object ret = null;
        try {
            // 容量为空,则消费者等待
            while (buffer.size() == 0) {
                notEmpty.await();
            }
            ret = buffer.poll();
            TimeUnit.SECONDS.sleep(5);
            System.out.printf("get %s,get one, current size:%d\n", Thread.currentThread().getName(), buffer.size());

            // 消费完毕,提醒所有生产者者可以继续生产
            notFull.signalAll();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
        return ret;
    }

    static class Setter implements Runnable {

        private BoundedBuffer boundedBuffer;

        Setter(BoundedBuffer boundedBuffer) {
            this.boundedBuffer = boundedBuffer;
        }

        @Override
        public void run() {
            boundedBuffer.set(new Object());
        }
    }

    static class Getter implements Runnable {
        private BoundedBuffer boundedBuffer;

        Getter(BoundedBuffer boundedBuffer) {
            this.boundedBuffer = boundedBuffer;
        }

        @Override
        public void run() {
            boundedBuffer.get();
        }
    }

    public static void main(String[] args) {

        BoundedBuffer boundedBuffer = new BoundedBuffer();
        Setter setter = new Setter(boundedBuffer);
        Getter getter = new Getter(boundedBuffer);
        for (int i = 0; i < 10; i++) {
            Thread setThread = new Thread(setter);
            Thread getThread = new Thread(getter);
            setThread.start();
            getThread.start();
        }
    }
 

                            
                        
                    
                    
                    

你可能感兴趣的:(线程中的生产者/消费者场景)