[Luogu P1879] [USACO06NOV]玉米田Corn Fields

洛谷传送门

题目描述

Farmer John has purchased a lush new rectangular pasture composed of M by N ( 1M12;1N12 1 ≤ M ≤ 12 ; 1 ≤ N ≤ 12 ) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can’t be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.

农场主John新买了一块长方形的新牧场,这块牧场被划分成 M M N N 列( 1M12;1N12 1 ≤ M ≤ 12 ; 1 ≤ N ≤ 12 ),每一格都是一块正方形的土地。John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。

遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。

John想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)

输入输出格式

输入格式:

第一行:两个整数 M M N N ,用空格隔开。

第2到第 M+1 M + 1 行:每行包含 N N 个用空格隔开的整数,描述了每块土地的状态。第 i+1 i + 1 行描述了第i行的土地,所有整数均为 0 0 1 1 ,是 1 1 的话,表示这块土地足够肥沃, 0 0 则表示这块土地不适合种草。

输出格式:

一个整数,即牧场分配总方案数除以 100,000,000 100 , 000 , 000 的余数。

输入输出样例

输入样例#1:

2 3
1 1 1
0 1 0

输出样例#1:

9

解题分析

看到数据范围小于等于12, 显然是一道状压dp(不过插头dp应该也能做, 以后来填坑)。
我们用一个12位二进制数表示每一行的每一个格子是否填充草地, 一共有 2121 2 12 − 1 个状态, 然后我们暴力转移即可。

乍一看似乎复杂度是 n×224 n × 2 24 的, 非常卡时间, 但实际上我们可以 O(212) O ( 2 12 ) 预处理出合法的摆法, 再转移即可。 处理方法是如果将当前状态左移和右移以为再与当前状态取与运算, 若得到的值为0则说明没有相邻两格种草。同样,我们预处理每一行的默认状态, 将所有不能种草的地方看为已种了草, 在枚举状态时如果当前状态&默认状态不为0则说明不能这样种草。

所以总复杂度约为 n×214 n × 2 14 , 秒过。

代码如下:

#include 
#include 
#include 
#include 
#include 
#include 
#define R register
#define IN inline
#define W while
#define gc getchar()
#define ll long long
#define MX 4200
#define MOD 100000000
template <class T>
IN void in(T &x)
{
    x = 0; static char c = gc;
    W (!isdigit(c)) c = gc;
    W (isdigit(c))
    x = (x << 1) + (x << 3) + c - 48, c = gc;
}
ll dp[13][MX];
int avai[MX], pre[MX], mp[13][13], top, hang, lie;
IN bool check(R int now) {return !(now & (now >> 1)) && !(now & (now << 1));}
int main(void)
{
    in(hang), in(lie);
    int bd = (1 << lie) - 1;
    for (R int i = 1; i <= hang; ++i)
    for (R int j = 1; j <= lie; ++j) in(mp[i][j]);
    for (R int i = 1; i <= hang; ++i)//处理每行状态
    {
        int ret = 0;
        for (R int j = 1; j <= lie; ++j) ret += (!mp[i][j]) << j - 1;
        pre[i] = ret;
    }
    for (R int i = 0; i <= bd; ++i) {if(check(i)) avai[++top] = i;}//预处理合法摆法
    for (R int i = 1; i <= top; ++i)
    {
        if(avai[i] & pre[1]) continue;
        dp[1][avai[i]] = 1;
    }
    for (R int i = 2; i <= hang; ++i)
    {
        for (R int j = 1; j <= top; ++j)
        {
            if(avai[j] & pre[i]) continue;
            for (R int k = 1; k <= top; ++k)//暴力转移
            {
                if(avai[j] & avai[k]) continue;
                dp[i][avai[j]] += dp[i - 1][avai[k]];
            }
        }
    }
    ll ret = 0;
    for (R int i = 1; i <= top; ++i) ret = (ret + dp[hang][avai[i]]) % MOD;
    printf("%lld", ret);
}

你可能感兴趣的:(状态压缩,动态规划)