- Spark 组件 GraphX、Streaming
叶域
大数据sparkspark大数据分布式
Spark组件GraphX、Streaming一、SparkGraphX1.1GraphX的主要概念1.2GraphX的核心操作1.3示例代码1.4GraphX的应用场景二、SparkStreaming2.1SparkStreaming的主要概念2.2示例代码2.3SparkStreaming的集成2.4SparkStreaming的应用场景SparkGraphX用于处理图和图并行计算。Graph
- 比较Spark与Flink
傲雪凌霜,松柏长青
大数据后端sparkflink大数据
ApacheSpark和ApacheFlink都是目前非常流行的大数据处理引擎,但它们在架构、处理模式、应用场景等方面有一些显著的区别。下面是二者的对比:1.处理模式Spark:主要支持批处理(BatchProcessing),也能通过SparkStreaming处理流式数据,但SparkStreaming本质上是通过微批(micro-batching)的方式处理流数据,延迟相对较高。SparkS
- pyspark kafka mysql_数据平台实践①——Flume+Kafka+SparkStreaming(pyspark)
weixin_39793638
pysparkkafkamysql
蜻蜓点水Flume——数据采集如果说,爬虫是采集外部数据的常用手段的话,那么,Flume就是采集内部数据的常用手段之一(logstash也是这方面的佼佼者)。下面介绍一下Flume的基本构造。Agent:包含Source、Channel和Sink的主体,它是这3个组件的载体,是组成Flume的数据节点。Event:Flume数据传输的基本单元。Source:用来接收Event,并将Event批量传
- Apache Flink 替换 Spark Stream的架构与实践( bilibili 案例解读)_streamsparkflink加载udf(1)
2401_84165953
程序员flinkspark架构
2.开发架构设计(1)开发架构图:如下图左侧所示。最上层是Saber-Streamer,主要进行作业提交以及API管理。下一层是BSQL层,主要进行SQL的扩展和解析,包括自定义算子和个性算子。再下层是运行时态,下面是引擎层。运行时态主要管理引擎层作业的上下层。bilibili早期使用的引擎是SparkStreaming,后期扩展了Flink,在开发架构中预留了一部分引擎层的扩展。最下层是状态存储
- 大数据秋招面经之spark系列
wq17629260466
大数据spark
文章目录前言spark高频面试题汇总1.spark介绍2.spark分组取TopN方案总结:方案2是最佳方案。3.repartition与coalesce4.spark的oom问题怎么产生的以及解决方案5.storm与flink,sparkstreaming之间的区别6.spark的几种部署方式:7.复习spark的yarn-cluster模式执行流程:8.spark的job提交流程:9.spar
- SparkStreaming业务逻辑处理的一些高级算子
看见我的小熊没
sparkStreamingscalasparkbigdatascala
1、reduceByKey reduceByKey是按key进行计算,操作的数据是每个批次内的数据(一个采集周期),不能跨批次计算。如果需要实现对历史数据的跨批次统计累加,则需要使用updateStateByKey算子或者mapWithState算子。packagecom.sparkscala.streamingimportorg.apache.log4j.{Level,Logger}impor
- Spark与Kafka进行连接
傲雪凌霜,松柏长青
后端大数据sparkkafka
在Java中使用Spark与Kafka进行连接,你可以使用SparkStreaming来处理实时流数据。以下是一个简单的示例,展示了如何使用SparkStreaming从Kafka读取数据并进行处理。1.引入依赖首先,在你的pom.xml文件中添加必要的依赖项(假设你在使用Maven):org.apache.sparkspark-core_2.123.4.0org.apache.sparkspar
- spark streaming优点和缺点
scott_alpha
优点:sparkstreaming会被转化为spark作业执行,由于spark作业依赖DAGScheduler和RDD,所以是粗粒度方式而不是细粒度方式,可以快速处理小批量数据,获得准实时的特性;以spark作业提交和执行,很方便的实现容错机制;DStreaming是在RDD上的抽象,更容易与RDD进行交互操作。需要将流式数据与批数据结合分析的情况下,非常方便。缺点:不可避免的延迟
- kafka消费者重复消费同一个topic
小琳ai
大数据kafka重复消费consumer
我的需求是我有多个消费者,需要重复消费某一个topic。场景是sparkstreaming消费kafka数据在这里sparkstream和kafka都是单节点的集群模式。同时起两个不同的groupid的应用,发现会发生后起来的应用消费不到数据。按理来讲不同的groupid属于不同的消费组,不会相互影响。由于是使用的cdh集成的kafka,不知道cdh里的zookeeper管理kafka的数据存在了
- SparkStreaming结合kafka将offSet保存在redis中
哈哈xxy
bigdatasparkStreamingkafkaoffsetredis
SparkStreaming结合kafka将offSet保存在redis中SparkStreaming结合kafka的两种方式1、SparkStreaming的高级APiCreateDStream,容易发生数据多次读取,官方已经不推荐2、SparkStreaming的低级APicreateDirectStream需要自己保存offset保存方式有两大类,一类是Spark自带的checkpoint(
- Spark Streaming+Kafka整合+offset管理
JiahuiTian
大数据#Spark#Kafkakafkaspark大数据
Kafka0-8Receiver模式和Direct模式都不适合当前版本不适用,本次学习采用Kafka0-10Direct模式,并通过第三方存储zookeeper来手动管理offset目录前言offset管理一个完整的整合代码Demo(Java版)导入相关的Maven依赖创建通过ZK管理Offset的工具类测试类Demo前言SparkStreaming获取Kafka的数据有两种方式:Receiver
- Spark(46) -- SparkStreaming整合kafka数据源
erainm
大数据学习spark
1.回顾Kafka可以看我前面kafka文章核心概念图解Broker:安装Kafka服务的机器就是一个brokerProducer:消息的生产者,负责将数据写入到broker中(push)Consumer:消息的消费者,负责从kafka中拉取数据(pull),老版本的消费者需要依赖zk,新版本的不需要Topic:主题,相当于是数据的一个分类,不同topic存放不同业务的数据--主题:区分业务Rep
- SparkStreaming 如何保证消费Kafka的数据不丢失不重复
K. Bob
SparkSpark
目录SparkStreaming接收Kafka数据的方式有两种:Receiver接收数据和采用Direct方式。(1)一个Receiver效率低,需要开启多个线程,手动合并数据再进行处理,并且Receiver方式为确保零数据丢失,需要开启WAL(预写日志)保证数据安全,这将同步保存所有收到的Kafka数据到HDFS,以便在发生故障时可以恢复所有数据。尽管WAL可以保证数据零丢失,但是不能保证exa
- spark采坑集锦之用kafka作为DStream数据源,并行度问题
方兵兵
spark采坑集锦
在SparkStreaming中作为数据源的Kafka怎样接收多主题发送的数据呢?使用StreamingContext.union方法将多个streaming流合并处理defmain(args:Array[String]):Unit={Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)valconf=newSparkConf().s
- 从零到一建设数据中台 - 关键技术汇总
我码玄黄
数据中台数据挖掘数据分析大数据
一、数据中台关键技术汇总语言框架:Java、Maven、SpringBoot数据分布式采集:Flume、Sqoop、kettle数据分布式存储:HadoopHDFS离线批处理计算:MapReduce、Spark、Flink实时流式计算:Storm/SparkStreaming、Flink批处理消息队列:Kafka查询分析:Hbase、Hive、ClickHouse、Presto搜索引擎:Elast
- 大数据开发(Spark面试真题-卷一)
Key-Key
大数据spark面试
大数据开发(Spark面试真题)1、什么是SparkStreaming?简要描述其工作原理。2、什么是Spark内存管理机制?请解释其中的主要概念,并说明其作用。3、请解释一下Spark中的shuffle是什么,以及为什么shuffle操作开销较大?4、请解释一下Spark中的RDD持久化(Caching)是什么以及为什么要使用持久化?5、请解释一下Spark中ResilientDistribut
- Structured Streaming
Francek Chen
Spark编程基础sparkzookeeperkafkaStructuredStreaming
目录一、概述(一)基本概念(二)两种处理模型(三)StructuredStreaming和SparkSQL、SparkStreaming关系二、编写StructuredStreaming程序的基本步骤(一)实现步骤(二)运行测试三、输入源(一)File源(二)Kafka源(三)Socket源(四)Rate源四、输出操作(一)启动流计算(二)输出模式(三)输出接收器一、概述提供端到端的完全一致性是设
- 入门篇 - Spark简介
君子何为
Spark核心模块image.pngSparkCore:提供了Spark最基础与最核心的功能,Spark其他的功能如:SparkSQL,SparkStreaming,GraphX,MLlib都是在SparkCore的基础上进行扩展的SparkSQL:Spark用来操作结构化数据的组件。通过SparkSQL,用户可以使用SQL或者ApacheHive版本的SQL来查询数据。SparkStreamin
- Flink状态编程
万事万物
介绍有状态的计算是流处理框架要实现的重要功能,因为稍复杂的流处理场景都需要记录状态,然后在新流入数据的基础上不断更新状态。SparkStreaming在状态管理这块做的不好,很多时候需要借助于外部存储(例如Redis)来手动管理状态,增加了编程的难度.访问redis需要通过网络访问,增大处理时间状态一致性问题,可能会造成数据的不一致(如何保证读写一致?)。Flink的状态管理是它的优势之一.什么是
- Spark streaming写入delta数据湖问题
kk_io
疑难杂症spark大数据分布式
问题1一个batch运行时间过长检查发现问题出现在merge写文件时间过长,一个batch本来应该是控制在1min。但项目上线到生产环境,检查sparkstreaming的job,发现数据在merge写入到数据湖时,往往超过1小时。继续排查,发现是一张表往往出现几百个小文件,影响数据写性能,故每天进行小文件合并操作。.优化小文件问题:optimizedelta.`dbfs:/your_mount_
- Spark streaming batch运行时间过长问题02
kk_io
疑难杂症sparkbatch大数据
排查Sparkstreaming数据写入时间过长问题,一方面是因为程序写数据湖小文件问题。在解决了小文件问题后,还是不能达到预期的1分钟一个batch。继续排查发现,在用Spark读取Kafka数据之后,由于数据通过Kafka读取后是逗号分隔的字符串,但是为了解决字符串某些字段中还有逗号的问题,只能使用正则表达式匹配,导致性能过慢。例如一条写入的业务数据如下:"OrderInfo","123","
- Spark简介
麦克阿瑟99
Spark作为第二代大数据处理工具,跟hadoop对比,它是基于内存的,所以在迭代计算方便速度有了很大提升。我用到的主要是SparkCore,SparkSQL,SparkStreaming。Spark以Rdd作为基础,Rdd是一个分布式的容器,类似于java中的String数组,但是它是分布式的。Rdd中有各种算子,总的来说分为转化算子和行动算子,转换算子不触到真正的计算,当执行到行动算子时才会触
- SparkStreaming---DStream
肥大毛
scala大数据sparksparkscalasql
文章目录1.DStream是什么2.DStream创建2.1RDD队列2.2自定义数据源3.DStream转换3.1无状态转换3.1.1Transformations3.1.2join3.2有状态转换操作3.2.1UpdateStateByKey3.2.2WindowOperations4.DStream输出1.DStream是什么参考博文SparkStreaming入门2.DStream创建2.
- Spark的JVM调优
王一1995
jvmspark
目录导致gc因素内存不充足的时候,出现的问题降低cache操作的内存占比调节executor堆外内存与连接等待时长调节executor堆外内存调节连接等待时长SparkJVM参数优化设置Sparkstreaming参数优化设置Spark反压参数设置导致gc因素堆内存存放我们创建的一些对象,有老年代和年轻代。理想情况下,老年代都是放一些生命周期很长的对象,数量应该是很少的,比如数据库连接池。我们在s
- 2019-10-08 大数据开发进阶之路
红瓦李
市场需要的水平熟练掌握Linux、SQL与HiveSQL掌握Hadoop生态主流技术,如HDFS/MapRedunce/Yarn/HBase/Flume等掌握Spark生态核心技术,如Spark架构/RDD转换算子/行动算子/持久化算子/任务调度/SparkStreaming等能够对崭新的问题进行建模分析,使用一直只是进行解决掌握大数据平台调优技能,源码阅读技巧具备应对BAT级别相关岗位面试能力学
- 2019-03-16 Spark基本架构及运行原理
做一只乐观的小猴子
SparkCore:包含Spark的基本功能,包含任务调度,内存管理,容错机制等,内部定义了RDDs(弹性分布式数据集),提供了很多APIs来创建和操作这些RDDs。为其他组件提供底层的服务。SparkSQL:Spark处理结构化数据的库,就像HiveSQL,Mysql一样,企业中用来做报表统计。SparkStreaming:实时数据流处理组件,类似Storm。SparkStreaming提供了A
- 大数据之Spark:Spark大厂面试真题
浊酒南街
大数据系列三sparkbigdata面试
目录1.通常来说,Spark与MapReduce相比,Spark运行效率更高。请说明效率更高来源于Spark内置的哪些机制?2.hadoop和spark使用场景?3.spark如何保证宕机迅速恢复?4.hadoop和spark的相同点和不同点?5.RDD持久化原理?checkpoint检查点机制?7.checkpoint和持久化机制的区别?RDD机制理解吗?9.Sparkstreaming以及基本
- SparkStreaming---入门
肥大毛
spark大数据scalasparksql大数据
文章目录1.SparkStreaming简介1.1流处理和批处理1.2实时和离线1.3SparkStreaming是什么1.4SparkStreaming架构图2.背压机制3.DStream案例实操1.SparkStreaming简介1.1流处理和批处理流处理和批处理是两种不同的数据处理方式,它们在处理数据的方式和特点上有所不同。流处理(StreamProcessing)是一种数据处理方式,它实时
- window环境下安装spark
FTDdata
spark是大数据计算引擎,拥有SparkSQL、SparkStreaming、MLlib和GraphX四个模块。并且spark有R、python的调用接口,在R中可以用SparkR包操作spark,在python中可以使用pyspark模块操作spark。本文介绍spark在window环境下的安装。0环境先给出安装好后的各个软件版本:win1064bitjava1.8.0scala2.12.8
- Spark 的架构与组件
OpenChat
spark架构大数据分布式
1.背景介绍Spark是一个快速、通用的大规模数据处理框架,它可以处理批量数据和流式数据,支持多种数据源,并提供了丰富的数据处理功能。Spark的核心组件包括SparkCore、SparkSQL、SparkStreaming和MLlib等。本文将详细介绍Spark的架构和组件,并分析其优势和挑战。1.1Spark的诞生和发展Spark的诞生可以追溯到2008年,当时Netflix的工程师Matei
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin