- 2.1概率统计的世界
极客探索者
量化交易概率论
欢迎来到概率统计的世界!在量化交易中,概率统计是至关重要的工具。通过理解概率,我们可以用数学的方法来描述市场行为,预测未来走势,并制定交易策略。让我们一起从基础概念开始,逐步深入,揭开概率统计的神秘面纱。1.1概率论的基本概念与应用概率是用来描述某个事件发生可能性的数值。例如,丢一枚硬币,正面朝上的概率是50%。这个概率可以用数学公式表示为:在量化交易中,我们常常需要计算各种事件的概率,例如股票价
- 深度学习应该如何入门?
wypdao
人工智能深度学习人工智能
深度学习是一门令人着迷的领域,但初学者可能会感到有些困惑。让我们从头开始,用通俗易懂的语言来探讨深度学习的基础知识。1.基础知识深度学习需要一些数学和编程基础。首先,我们要掌握一些数学知识,如线性代数、微积分和概率统计。这些知识在深度学习算法中非常常见。另外,选择一门编程语言作为工具,如Python,掌握其基本语法和常用库的使用。2.学习机器学习吴恩达的机器学习课程是一个很好的入门教程。虽然有些地
- 如何学习和规划类似ChatGPT这种人工智能(AI)相关技术
ABEL in China
学习chatgpt人工智能
学习和规划类似ChatGPT这种人工智能(AI)相关技术的路径通常包括以下步骤:学习基础知识:学习编程:首先,你需要学习一种编程语言,例如Python,这是大多数人工智能项目的首选语言。数学基础:深度学习和自然语言处理等领域需要一定的数学基础,包括线性代数、微积分和概率统计。掌握机器学习和深度学习:了解机器学习和深度学习的基本概念,例如神经网络、卷积神经网络(CNN)和递归神经网络(RNN)。学习
- 均方根(rms),标准差(std),平均绝对误差(mae),方差(var/std*std)计算与数学意义
拾穗哥
matlab算法经验分享
在计算时总是遇到需要计算平均值,但是对于均方根和标准差选择还是不明确。标题里面的括号为matlab函数可以直接运行。1、均方根(rms)均方根误差用于衡量观测值同真值之间的偏差。2、标准差(std)标准差是方差的算术平方根。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。3、平均绝对误差(mae)平均绝对误差是所有单个观测值与算术平均值的偏
- 发家致富的秘密(83)
c0e1a742c261
1)、父母做什么,我们便跟着做什么。能超越父母的子女并不多。父母读大学,孩子便能读大学。父母是大学教授,孩子再差也是大学老师。生活是概率统计,漏网之鱼不过是传奇,是奇迹。我们35岁做什么,我们的孩子到了35岁便做什么。锁定一个卖点循环。锁定了,便不要变。不要以为人生很长。从大学出来,我们不是22便是23。25岁成家了,所有的想法都没了。挣扎到35岁,便是人生的顶点。现在,我们在做什么?我们的卖点,
- 8、python多项式贝叶斯文本分类(完整)
UP Lee
数据挖掘实战多项式贝叶斯文章分类
1、贝叶斯定理(BayesTheorem)朴素贝叶斯分类(NaiveBayesClassifier)贝叶斯分类算法,是统计学的一种分类方法,它是利用贝叶斯定理的概率统计知识,对离散型的数据进行分类的算法2、贝叶斯算法的类型sklearn包naive_bayes模块GaussianNB高斯贝叶斯BernoulliNB伯努利贝叶斯MultionmialNB多项式贝叶斯(需要知道具体每个特征的数值大小)
- 这才是心理学
JeetChan
这才是心理学 如果让我荐书,一定是这本,《这才是心理学》。曾极力向身边的人推荐学习概率统计方面的知识,尽管人们都“嗤之以鼻”,而我认为世界是被概率统治的,最终被揭示的行为规律通常都是一种概率关系。这本书向我们阐述了心理学的批判性思维(原作名:HowtoThinkStraightaboutPsychology)和概率性思维。书中有大量反常识的观点,颠覆你的认知。同时,这也是一本难书,书中包含了大量
- LogLogCounting 基数估计算法
芒果菠萝蛋炒饭
介绍基数估计算法(CardinalityEstimationAlgorithm)是基于概率统计理论的估算给定数据集中不重复元素基数的算法。它是一种基于概率统计理论所设计的概率算法,克服了精确基数计数算法的诸多弊端(如内存需求过大或难以合并等),同时可以通过一定手段将误差控制在所要求的范围内。什么是基数?基数指的是一个集合(这里的集合可以包含重复元素,不是集合论中定义的集合)中不同元素的个数,例如集
- 基于第一性原理投资
曹博士
图片发自App张教授打造丹华资本,致力于用第一性原理来指导风险投资。所谓第一性原理,就是基于最基本的自然法则,而且通常是可以用数学来表达并且在物理上首先验证。比如熵法则,量子原理,概率统计框架,等。不过从实际效果来看,2013起步的丹华资本,业绩很差。基本上成了反面案例。这个类似由诺贝尔经济学获奖者组建的量化投资公司长期资本,本来希望用量化的方式做套利投资,结果一个俄罗斯的黑天鹅事件,就让其折戟沉
- 概率统计学习打卡——数理统计与描述性分析
xtsqmx
1.数理统计的基本概念总体:研究对象的全体(X)个体:组成总体的每个基本单元样本:从总体中抽取的一部分个体()简单随机样本:具有随机性和独立性的样本,即样本相互独立具有同一分布样本的两重性:抽样前是随机变量,抽样后是具体的数统计量:样本的函数,不含有任何未知参数抽样分布:统计量的分布2.常用的统计量样本均值:用来估计总体均值和对对有关总体均值的假设做检验样本方差:用来估计总体方差和对有关总体方差的
- DataWhale概率统计4——方差分析
摩卡Daddy
6.方差分析6.1概要方差分析(Analysisofvariance,ANOVA)主要研究分类变量作为自变量时,对因变量的影响是否显著,用于两个及两个以上样本均属差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分为两类,一是不可控的随机因素,另一是研究中施加对结果形成影响的可控因素6.2原理方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发
- 《自动驾驶汽车的缺陷及其产品责任》(四)
刘东利2020
接下来是自动驾驶的主体资格讨论,从技术及法律上。首先看技术的理解:从自动驾驶人工智能所赖以实现的技术来看,所谓具有深度自主学习能力的人工智能其本质上是依靠大数据、概率统计以及日益增长的运算能力实现对驾驶行为及其规律的重复性归纳,但并不能完全揭示其本质或内在规律,尤其是其缺乏人类的创造性思维,无法在既有信息和数据的基础上创造性地解决未知问题、无法创造新知识。所以,第一方面的题眼是“重复性归纳”,不具
- 人工智能之大数定理和中心极限定理
WEL测试
人工智能WEL测试人工智能概率论大数定理中心极限定理
大数定律大数定律:是一种描述当试验次数很大时所呈现的概率性致的定律,由概率统计定义“频率收敛于概率”引申而来。换而言之,就是n个独立分布的随机变量其观察值的均值依概率收敛于这些随机变量所属分布的理论均值,也就是总体均值。例如:假设每次从1、2、3当中随机选取一个数字,随着抽样次数的增加,样本均值越来越趋近于总体期望((1+2+3)/3=2)。依概率收敛:设{XnX_nXn}为一随机变量序列,X为一
- DAY 25 《你能准确的预测股价嘛》
Ciel天
你不能准确的预估5分钟内股票价格的涨幅,就像你不能够预估,抛硬币时会是哪一面朝上一样,因为这两件事情都和赌博买彩票一样,是“独立事件”。换句话说,预测的准确率永远无法超过50%,这在概率统计学上没有意义。当一件事情发生的概率在50%以上,哪怕是51%,我们就要努力,甚至要赌,因为哪怕是这一次输了,从长期看,你一定会赢。“绝大多数人没有从觉悟上理解统计概率基础知识有多么重要,于是,这一辈子就好像别人
- 机器学习 强化学习 深度学习的区别与联系
坠金
机器学习机器学习人工智能深度学习
机器学习强化学习深度学习机器学习按道理来说,这个领域(机器学习)应该叫做统计学习(StatisticalLearning),因为它的方法都是由概率统计领域拿来的。这些人中的领军人物很有商业头脑,把统计和物理的数理模型,改名叫做机器,比如**模型(model)就叫**机(machine),把一些层次模型(hierarchicalmodel)说成是“网”(net)。这样,搞出了几个“机”和“网”之后,
- 深度学习如何入门?
清水白石008
深度学习自然语言处理人工智能
深度学习如何入门?深度学习是一种利用多层神经网络来学习数据特征和模式的机器学习方法,它在图像识别、自然语言处理、语音识别、推荐系统等领域都取得了令人瞩目的成果。那么,如果你想学习深度学习,你需要掌握哪些知识和技能呢?本文将为你提供一个简明的指南,帮助你快速入门深度学习。一、基础知识深度学习涉及到许多数学概念,如线性代数、微积分和概率统计。如果你对这些概念不熟悉,可以通过在线课程、教科书和教程来学习
- 读过的书单
竭尽全力才能成功
读万卷书行万里路2017-今天读过的书单写出来给大家参考下工欲善其事,必先利其器我是一个php程序员鸟哥的linux私房菜基础篇服务器架构篇日本结城浩著程序员的数学1程序员的数学2概率统计程序员的数学3线性代数蒋心数据库系统概论清华大学出版社Mysql从入门到精通国家863软件孵化器headfirst设计模式大话设计模式人月神话HTTP权威指南人民邮电出版社redis入门指南李子烨人民邮电出版社锋
- 贝叶斯估计:Cramér-Rao下界和Fisher信息
DoYoungExplorer
导航算法及滤波算法概率论人工智能机器学习
在概率统计和信息理论领域,Cramér-Rao下界(Cramér-RaoBound)和Fisher信息(FisherInformation)是两个重要而密切相关的概念。它们在估计理论和信息量度量中发挥着关键作用。本文将深入探讨这两个概念的定义、关系以及它们在统计推断中的应用。Cramér-Rao下界的表达:Cramér-Rao下界(Cramér-Raobound)是统计估计理论中的一个重要概念,它
- 多元高斯分布:条件分布推导
DoYoungExplorer
导航算法及滤波机器学习人工智能算法
在概率统计学中,多元高斯分布是一种非常重要的分布,其条件分布的推导在实际问题中有广泛的应用。本文将详细探讨给定部分变量条件下,多元高斯分布中另一部分变量的条件分布的推导过程。1.多元高斯分布回顾首先,我们回顾一下多元高斯分布的基本形式:其中,Xa和Xb是随机向量的两个部分,μ是均值向量,Σ是协方差矩阵。均值向量:协方差矩阵:此外,使用协方差矩阵的逆矩阵也比较方便,即精度矩阵从而引入精度矩阵2.条件
- 机器学习周刊第五期:一个离谱的数据可视化Python库、可交互式动画学概率统计、机器学习最全文档、快速部署机器学习应用的开源项目、Redis 之父的最新文章
机器学习算法与Python实战
机器学习算法与Python实战机器学习信息可视化python
date:2024/01/08这个网站用可视化的方式讲解概率和统计基础知识,很多内容还是可交互的,非常生动形象。大家好,欢迎收看第五期机器学习周刊本期介绍7个内容,涉及Python、概率统计、机器学习、大模型等,目录如下:一个离谱的Python库看见概率,看见统计2024机器学习最强文档Gradio顶级程序员如何使用LLMTinyLlama微软宣布利用大型语言模型改进文本嵌入1、一个离谱的Pyth
- 线性代数——(期末突击)概率统计习题(概率的性质、全概率公式)
qiyi.sky
线性代数概率论学习笔记
目录概率的性质题一全概率公式题二题三概率的性质有限可加性:若有限个事件互不相容,则单调性:互补性:加法公式:可分性:题一在某城市中共发行三种报纸:甲、乙、丙。在这个城市的居民中,订甲报的有45%,订乙报的有35%,订丙报的有30%,同时订甲、乙两报的有10%,同时订甲、丙两报的有8%,同时订乙、丙两报的有5%,同时订三种报纸的有3%,求下述百分比:(1)只订甲报的;(2)只订甲、乙两报的;(3)只
- 理论U2 贝叶斯决策理论
轩不丢
机器学习机器学习
文章目录一、概率统计理论基础1、乘法公式2、全概率公式3、贝叶斯公式二、贝叶斯决策理论1、用处2、解决问题3、决策基础4、一些概念5、核心公式三、最小错误率贝叶斯决策1、目标2、例题分析3、问题1)决策的风险四、最小风险贝叶斯决策1、背景2、基本概念1)损失函数2)条件期望损失:3)期望风险:3、目标4、决策5、算法步骤6、例题分析五、两种贝叶斯的关系六、朴素贝叶斯决策1、问题2、概念3、例题分析
- 数据结构与算法之美学习笔记:46 | 概率统计:如何利用朴素贝叶斯算法过滤垃圾短信?
浊酒南街
数据结构与算法之美学习笔记算法数据结构
目录前言算法解析总结引申前言本节课程思维导图:上一节我们讲到,如何用位图、布隆过滤器,来过滤重复的数据。今天,我们再讲一个跟过滤相关的问题,如何过滤垃圾短信?垃圾短信和骚扰电话,我想每个人都收到过吧?买房、贷款、投资理财、开发票,各种垃圾短信和骚扰电话,不胜其扰。如果你是一名手机应用开发工程师,让你实现一个简单的垃圾短信过滤功能以及骚扰电话拦截功能,该用什么样的数据结构和算法实现呢?算法解析实际上
- 算法有哪⼏类?
颓特别我废
C语言算法c语言
一、问题按照执⾏功能的不同,可以将算法分为不同的类别,那么算法有哪⼏类?二、解答计算机上的算法按照实现功能可以分为两⼤类:即数值型算法和⾮数值算法。1、数值型算法(NumericalAlgorithms)这类算法主要用于处理数值数据和解决数学问题,它们通常涉及到大量的数学计算,包括但不限于矩阵运算、微积分、线性代数、概率统计、优化问题等。例如,求解方程组的高斯消元法、数值积分方法如辛普森法则、牛顿
- 笔记 | gamma分布
懒麻蛇
机器学习matlabpython人工智能统计学
gamma分布简介大写:Γ小写:γGamma函数在概率统计中频繁现身,众多的统计分布,包括常见的统计学三大分布(t分布,χ2分布,F分布)、Beta分布、Dirichlet分布的密度公式中都有Gamma函数的身影;当然发生最直接联系的概率分布是直接由Gamma函数变换得到的Gamma分布。α称为shapeparameter,主要决定了分布曲线的形状;β称为rateparameter,主要决定曲线有
- 11种概率分布,你了解几个?
小白学视觉
人工智能python编程语言机器学习深度学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达本文转自:视学算法了解常见的概率分布十分必要,它是概率统计的基石。这是昨天推送的从概率统计到深度学习,四大技术路线图谱,都在这里!文章中的第一大技术路线图谱如下所示,图中左侧正是本文要总结的所有常见概率分布。1均匀分布1)离散随机变量的均匀分布:假设X有k个取值:x1,x2,...,xk则均匀分布的概率密度函数为:2)连续随机变
- 《财富自由之路》39-40章
Yixing_seven
1、为什么没有人能准确预测市场价格的短期走向?问题的质量决定答案的质量先定义什么是“准确”,究竟要做到什么程度才算是准确关于二元问题,一般的答案只有“不一定”,或者“不知道”关于“预测”还缺个限定,时间维度不明,是短期预测?还是长期预测?关键结论短期价格预测几乎无法做到对于长期价格的预测,却比较容易,因为“基本面”就放在那里HOW:避免短期思考,一个月记录一次价格,并形成习惯学好并应用概率统计知识
- 揭秘大模型「幻觉」:数据偏差、泛化与上下文理解的挑战与解决之道
数据与后端架构提升之路
大模型深度学习机器学习人工智能
什么是大模型「幻觉」所谓的「幻觉」指的是当大模型生成与现实不符或逻辑上不连贯的信息时。这通常发生在模型对某些数据理解不足或数据本身存在偏差的情况下。由于模型是基于概率统计和以往数据训练的,它们可能在面对未知或少见情况时产生不准确的推断。大模型不具有本地知识所以存在幻觉造成大模型「幻觉」的原因这种现象的产生有多个原因:数据偏差:如果训练数据中存在偏差,模型可能会学习并复制这些偏差。过度泛化:模型可能
- AI技术体系和领域浅总结
TisUs
数学基础微积分《高等数学》线性代数《线性代数》概率统计《概率论与数理统计》信息论《信息论基础》(机械工业出版社)集合论和图论《离散数学》博弈论《博弈论》(中国人民大学出版社)张量分析现代几何计算机基础计算机原理程序设计语言操作系统分布式系统算法基础机器学习算法机器学习基础(估计方法特征工程)线性模型(线性回归)逻辑回归决策树模型(GBDT)支持向量机贝叶斯分类器神经网络(深度学习):MLPCNNR
- 计算机图形学方向的基本能力
每天要吃一桶饭
CG图形学图形学
(1)数学基础:线性代数、概率统计学。在深度学习原理以及图形学的基础的原理,很加分。基本的算法研发能力。(2)综合性的技能:CV、DeepLearning、Interaction(人与自然交互、视觉交互)(3)学习多方面技能,实际应用落地。软硬结合、算法与应用结合。(4)工程化实现!用实际场景来验证算法的可行性,从哪些方面进行优化。(5)兴趣、热情,解决问题!学习的深度。(6)追求系统更加可用、好
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio