- 自动编码器 - Autoencoder
hellozhxy
深度学习人工智能机器学习
文章目录一、自编码器(Autoencoder)简单模型介绍二、神经网络自编码模型三、神经网络自编码器三大特点四、自编码器(Autoencoder)搭建五、几种常见编码器1.堆栈自动编码器2.欠完备自编码器3.正则自编码器4.噪自编码器(denoisingautoencoder,DAE)参考链接一、自编码器(Autoencoder)简单模型介绍暂且不谈神经网络、深度学习等,仅仅是自编码器的话,其原理
- Autoencoder
chuange6363
人工智能python
自编码器Autoencoder稀疏自编码器SparseAutoencoder降噪自编码器DenoisingAutoencoder堆叠自编码器StackedAutoencoder本博客是从梁斌博士的博客上面复制过来的,本人利用Tensorflow重新实现了博客中的代码深度学习有一个重要的概念叫autoencoder,这是个什么东西呢,本文通过一个例子来普及这个术语。简单来说autoencoder是一
- stl文件 python_STL_10数据集处理
weixin_39614094
stl文件python
这次要写的是stl10用于自编码器自编码,又称自编码器(autoencoder),是神经网络的一种,经过训练后能尝试将输入复制到输出。自编码器(autoencoder)内部有一个隐藏层h,可以产生编码(code)表示输入。该网络可以看作由两部分组成:一个由函数h=f(x)表示的编码器和一个生成重构的解码器r=g(h)。自编码器(Autoencoder,AE)是一个3层或者大于3层的神经网络,将输入
- 看demo学算法之 自编码器
小琳ai
算法
大家好,这里是小琳AI课堂!今天我们来聊聊自编码器。AE自编码器,全称为Autoencoder,是一种数据压缩算法,它能够通过学习输入数据的有效表示(编码)来重建输入数据(解码)。自编码器通常被用于无监督学习任务,尤其是在降维、特征学习、数据去噪等领域。下面,我将从四个不同的角度来详细解释AE自编码器。1.技术细节自编码器由两部分组成:编码器(encoder)和解码器(decoder)。编码器负责
- 生成网络总结
研三小学渣
学习笔记深度学习人工智能
AE(AutoEncoder)自编码器标准的AE由编码器(encoder)和解码器(decoder)两部分组成,。整个模型可以看作一个“压缩”与“解压”的过程:首先编码器将真实数据(真实样本)压缩为低维隐空间中的一个隐向量,该向量可以看作输入的“象征”;然后解码器将这个隐向量解压,得到生成数据(生成样本)。在训练过程中,会将生成样本与真实样本进行比较,朝着减小二者之间差异的方向去更新编码器和解码器
- 数据降维方法介绍(十二)
科技小白不能再白了
第八种方法:自编码器降维姓名:何源学号:21011210073学院:通信工程学院转载:基于自编码网络AutoEncoder完成数据降维并且提取数据的本质特征【嵌牛导读】自编码器降维方法简介【嵌牛鼻子】自编码器【嵌牛提问】自编码器降维原理是什么?【嵌牛正文】数据降维的意思是什么?一维数据我们可以认为它是一个点,二维数据是一条线,三维数据是一个面,但四维数据我们就想象不到了,但这并不意味着不存在。对于
- 深入理解vqvae
Adenialzz
人工智能机器学习计算机视觉
深入理解vqvaeTL;DR:通过vectorquantize技术,训练一个离散的codebook,实现了图片的离散表征。vqvae可以实现图片的离散压缩和还原,在图片自回归生成、StableDiffusion中,有重要的应用。从AE和VAE说起AE(AutoEncoder,自编码器)是非常经典的一种自监督表征学习方法,它由编码器encoder和解码器decoder构成,编码器提取输入图像的低维特
- Autoencoder 有什么用?
脏小明
autoencoder可以用来初始化神经网络的权重(即预训练:pre-training)和降维。如果在做autoencoder的时候激活函数为linear的话,那么这就相当于在做PCA了。
- AutoEncoder自动编码器、VAE变分自编码器、VQVAE量子化(离散化)的自编码器
丁希希哇
AIGC阅读学习算法深度学习人工智能pytorch
文章目录AutoEncoder自动编码器(一)AutoEncoder的基本架构(二)AutoEncoder的概率理解(三)AutoEncoder的局限VAE变分自编码器(VariationalAutoEncoder)(一)VAE简介(二)VAE的概率理解(三)VAE与AE(三)VAE与GAN(四)VAE的损失函数VQVAE量子化(离散化)的自编码器(一)VQVAE简介(二)VQVAE与VAE(三)
- PyTorch][chapter 13[李宏毅深度学习][Semi-supervised Linear Methods-2]
明朝百晓生
深度学习pytorch人工智能
前言:接上篇CSDN这里面重点讲下面4个方面目录:PCA-AnotherPointofview(SVD)PCA和AutoEncoder的关系PCA的缺点PCAPython例子一PCA-AnotherPointofview以手写数字7的图像为例,它由不同的笔画结构组成,分别为则手写数字7可以表示为上图1.1损失函数我们要找到一组向量使得最小(公式1.1)有论文证明过,这个最优解就是SVD奇异分解结果
- latent-diffusion model环境配置--我转载的
gaoenyang760525
人工智能深度学习
latent-diffusionmodel环境配置,这可能是你能够找到的最细的博客了_latentdiffusionmodel训练autoencoder-CSDN博客前言最近在研究diffusion模型,并对目前最火的stable-diffusion模型很感兴趣,又因为stable-diffusion是一种latent-diffusion模型,故尝试复现latent-diffusionmodel,
- VITS:Conditional Variational Autoencoder with Adversarial Learning forEnd-to-End Text-to-Speech——TTS
pied_piperG
语音识别音频深度学习机器学习神经网络VAE
笔记地址:https://flowus.cn/share/4c8c251b-cb8e-4f21-aa9e-139c1c3cf883【FlowUs息流】Vits论文地址:proceedings.mlr.pressAbstract与传统的two-stageTTS(即文字→mel频谱→声音)相比,是一种parallelend-to-endTTS,提升了效率且声音自然。其它parallel方法主要存在音质
- 深入学习卷积神经网络(CNN)的原理知识
AAI机器之心
cnn人工智能KNN深度学习机器学习神经网络tensorflow
在深度学习领域中,已经经过验证的成熟算法,目前主要有深度卷积网络(DNN)和递归网络(RNN),在图像识别,视频识别,语音识别领域取得了巨大的成功,正是由于这些成功,能促成了当前深度学习的大热。与此相对应的,在深度学习研究领域,最热门的是AutoEncoder、RBM、DBN等产生式网络架构,但是这些研究领域,虽然论文比较多,但是重量级应用还没有出现,是否能取得成功还具有不确定性。但是有一些比较初
- 【AI】深度学习在编码中的应用(4)
giszz
人工智能人工智能
目录一、基于自编码器的架构二、基于可逆网络的架构三、基于GAN模型的架构四、多层结构图像压缩框架今天学习和梳理基础架构设计的4种模式:一、基于自编码器的架构在人工智能应用中,自编码器(Autoencoder,AE)是一种无监督的神经网络模型,用于学习输入数据的编码表示(即特征),并能够从这种编码表示中重构原始数据。自编码器通常用于数据降维、特征学习、去噪等任务。在基础架构设计中,基于自编码器的架构
- 无监督神经网络原理与实现
10岁的小屁孩
机器学习神经网络人工智能
目录网络结构训练目标Python实现无监督神经网络通过学习输入数据本身的内在结构,而不需要标签信息,它可以用于特征提取、降维等任务。网络结构无监督学习中的一个常见结构是自编码器(Autoencoder)。自编码器旨在通过一种无监督的方式学习数据的有效表示(即编码)。它由两部分组成:编码器(Encoder)和解码器(Decoder)。编码器将输入数据压缩成一个低维表示,而解码器则将这个低维表示重构回
- 变分自编码器(Variational AutoEncoder,VAE)
溯源006
深度学习相关算法学习人工智能深度学习stablediffusionDALL·E2Imagen
1从AE谈起说到编码器这块,不可避免地要讲起AE(AutoEncoder)自编码器。它的结构下图所示:据图可知,AE通过自监督的训练方式,能够将输入的原始特征通过编码encoder后得到潜在的特征编码,实现了自动化的特征工程,并且达到了降维和泛化的目的。而后通过对进行decoder后,我们可以重构输出。一个良好的AE最好的状态就是解码器的输出能够完美地或者近似恢复出原来的输入,即。为此,训练AE所
- 深度学习--AutoEncoder异常值处理
Stitch的实习日记
深度学习深度学习人工智能
整体的算法思路:1.将正常样本与异常样本切分为:训练集X,训练集Y,测试集X,测试集Y2.AutoEncoder建模:建模3.用正样本数据训练AutoEncoder:因为AutoEncoder是要想办法复现原有数据,因此要确保AutoEncoder看到的都只是自身正常的数据,这样当异常的数据到来时,就会出现很突兀的状况,这也是我们要的效果。4.计算阈值:因为异常样本会造成很突兀的效果,但是突兀的程
- 降噪自编码器(Denoising Autoencoder)
不做梵高417
denoisingautoencoder
降噪自编码器(DenoisingAutoencoder)是一种用于无监督学习的神经网络模型。与普通的自编码器不同,降噪自编码器的目标是通过在输入数据中引入噪声,然后尝试从具有噪声的输入中重建原始无噪声数据。以下是降噪自编码器的主要特点和工作原理:1.噪声引入:在训练阶段,降噪自编码器将输入数据添加一些噪声,例如高斯噪声或随机失活(randomdropout)。这样的操作迫使网络学习对输入的噪声具有
- 乘骐骥以驰骋兮,来吾道夫先路——2023年大模型技术基础架构盘点与开源工作速览
中杯可乐多加冰
前沿资讯分享大模型GPTFalcon百川LLM
目录一、模型基本架构1.1、自回归(Autoregressive)模型架构1.2、自编码(Autoencoder)模型架构1.3、完整的编码-解码模型架构二、典型开源工作速览2.1、LLaMA-22.2、baichuan-22.3、Falcon2.4、BLOOM最后在过去的一年里,大模型技术在人工智能领域取得了巨大的进展和突破,成为业界瞩目的焦点。从优化的学习算法到激动人心的应用案例,从推动科研的
- 利用自编码器(AutoEncoder, AE),对图像或信号进行降维和聚类,并将隐空间在2D空间中可视化,通过Matlab编程实现
学兔兔VIP
深度学习机器学习算法人工智能聚类信息可视化深度学习
自编码器(AutoEncoder)是一种无监督学习方法,用于对数据进行降维和聚类。它通过学习输入数据的低维表示来重构输入数据,同时保持数据的分布不变。在图像或信号处理中,自编码器可以用于提取特征、压缩数据以及可视化隐藏空间。首先,我们需要构建一个自编码器模型。自编码器由两部分组成:编码器和解码器。编码器将输入数据映射到低维表示,解码器将低维表示还原为原始数据。为了使编码器能够学习到数据的分布,我们
- 深度神经网络的特征表示,神经网络识别图像原理
快乐的小荣荣
神经网络dnn人工智能
有哪些深度神经网络模型?目前经常使用的深度神经网络模型主要有卷积神经网络(CNN)、递归神经网络(RNN)、深信度网络(DBN)、深度自动编码器(AutoEncoder)和生成对抗网络(GAN)等。递归神经网络实际.上包含了两种神经网络。一种是循环神经网络(RecurrentNeuralNetwork);另一种是结构递归神经网络(RecursiveNeuralNetwork),它使用相似的网络结构
- 自编码器AE全方位探析:构建、训练、推理与多平台部署
工业甲酰苯胺
人工智能分布式数据库
本文深入探讨了自编码器(AE)的核心概念、类型、应用场景及实战演示。通过理论分析和实践结合,我们详细解释了自动编码器的工作原理和数学基础,并通过具体代码示例展示了从模型构建、训练到多平台推理部署的全过程。一、自编码器简介自编码器的定义自编码器(Autoencoder,AE)是一种数据的压缩算法,其中压缩和解压缩函数是数据相关的、有损的、从样本中自动学习的。自编码器通常用于学习高效的编码,在神经网络
- 一种简单的自编码器PyTorch代码实现
赵卓不凡
深度学习图像处理pytorch
1.引言对于许多新接触深度学习爱好者来说,玩AutoEncoder总是很有趣的,因为它具有简单的处理逻辑、简易的网络架构,方便可视化潜在的特征空间。在本文中,我将从头开始介绍一个简单的AutoEncoder模型,以及一些可视化潜在特征空间的一些的方法,以便使本文变得生动有趣。闲话少说,我们直接开始吧!2.数据集介绍在本文中,我们使用FashionMNIST数据集来完成此任务。以下是Kaggle上数
- 一文弄懂自编码器 -- Autoencoders
赵卓不凡
深度学习计算机视觉人工智能深度学习机器学习
1.引言近年来,自编码器(Autoencoder)一词在许多人工智能相关的研究论文、期刊和学位论文中被频繁提及。自动编码器于1980年推出,是一种用于神经网络的无监督学习技术,可以从未被标注的训练集中学习。本文重点介绍自编码器的概念、相关变体及其应用,闲话少说,我们直接开始吧!2.原理介绍自编码器神经网络是一种无监督的机器学习算法,它的主要目的为将输入层的数据压缩成较短的格式,我们也可以称为潜在空
- 【论文复现】RoSteALS: Robust Steganography using Autoencoder Latent Space-2023-CVPR
岁月漫长_
图像隐写论文复现论文阅读
代码复现代码链接:https://github.com/TuBui/RoSteALS一定要按照dockerfile,requirements.txt和requirements2.txt配置环境需要补充的库:pip安装:omegaconfslackslackclientbchlib(0.14.0版本)einopsimagenet-cconda安装:scikit-image,matplotlib按照作
- PyTorch深度学习实战(27)——变分自编码器(Variational Autoencoder, VAE)
盼小辉丶
PyTorch深度学习深度学习pytorch人工智能
PyTorch深度学习实战(27)——变分自编码器0.前言1.变分自编码器1.1自编码器的局限性1.2VAE工作原理1.3VAE构建策略1.4KL散度1.5重参数化技巧2.构建VAE小结系列链接0.前言变分自编码器(VariationalAutoencoder,VAE)是一种生成模型,结合了自编码器和概率模型的思想,通过学习输入数据的潜分布,能够生成新的样本。与传统的自编码器不同,变分自编码器引入
- 【代码精读】Variational Autoencoder (VAE) 变分自编码器
minipuding
代码精读pythonpytorch深度学习
文章目录【代码精读】VariationalAutoencoder(VAE)变分自编码器1.代码来源:2.代码结构3.代码精读in``models``package3.1.base.py3.2.vanilla_vae.py【代码精读】VariationalAutoencoder(VAE)变分自编码器本篇博客不会很详细介绍VAE的原理,而是用“知其然”的方式直接上代码。1.代码来源:PyTorch-V
- Masked Autoencoders Are Scalable Vision Learners 2021-11-13
不想读Paper
ViT作为Backbone,用类似BERT的方式进行自监督预训练,通过随机遮盖大部分patch让encoder更好地“理解”图片。重点以及和BEIT的区别其实把BERT模型搬到视觉领域,也已经有之前的一篇工作BEIT了。而且BEIT中也使用了AutoEncoder,但是和MAE的区别是,这里的AE是作为一个tokenizer使用,而下面的Transformer重现的也是token而不是原图。BEI
- AutoEncoder个人记录
小趴菜日记
人工智能算法机器学习
原理最常见的降维算法有主成分分析法PCA,通过对协方差矩阵进行特征分解而得到数据的主要成分,但是PCA本质上是一种线性变换,提取特征的能力极为有限。AutoEncoder把长度为d_in输入特征向量变换到长度为d_out的输出向量,借助于深层神经网络的非线性特征提取能力,自编码器可以获得良好的数据表示,甚至可以更加完美的恢复出输入。Encoder:把高维输入x编码成低维的隐藏向量h(使神经网络学习
- PyTorch深度学习实战(25)——自编码器(Autoencoder)
盼小辉丶
深度学习pytorch人工智能
PyTorch深度学习实战(25)——自编码器0.前言1.自编码器2.使用PyTorch实现自编码器小结系列链接0.前言自编码器(Autoencoder)是一种无监督学习的神经网络模型,用于数据的特征提取和降维,它由一个编码器(Encoder)和一个解码器(Decoder)组成,通过将输入数据压缩到低维表示,然后再重构出原始数据。在本节中,我们将学习如何使用自编码器,以在低维空间表示图像,学习以较
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d