- 直方图匹配(Histogram Matching)
姜太公钓鲸233
计算机视觉人工智能机器学习
直方图匹配(HistogramMatching),也被称为直方图规定化(HistogramSpecification)或直方图修正(HistogramEqualization),是一种图像处理技术,用于调整图像的直方图,以使其与某个目标直方图相匹配。目标直方图通常是用户定义的或者是希望获得的期望分布。直方图匹配的目标是改变图像的像素值分布,从而使其在视觉上更接近目标直方图。这对于图像增强、风格迁移
- 常见大模型框架
AI小夜
ai
生成对抗网络(GAN)类似框架StyleGAN(及其变体StyleGAN2和StyleGAN3):开发者:NVIDIA特点:能够生成极高质量的图像,广泛应用于人脸生成、艺术创作等领域。BigGAN:开发者:DeepMind特点:在大规模数据集上训练的高质量图像生成模型,特别适用于高分辨率图像生成。CycleGAN:特点:用于图像到图像的转换任务,如风格迁移,无需成对的训练数据。Pix2Pix:特点
- 基于白盒表征的图像卡通化
Mezereon
取自CVPR2020的一篇文章LearningtoCartoonizeUsingWhite-boxCartoonRepresentations图像卡通化,即是将自然拍摄到的图片转化成卡通风格的图片,属于一种风格迁移。图像卡通化的例子如上图所示,左图为真实图片,右图为卡通化的结果。风格迁移很久之前就被人提出来了,比如2016年BAIR实验室提出来的Pix2Pix,以及之后针对非pair数据所提出来的
- pytorch实战-7图像风格迁移
新世纪摸鱼战士678
pytorch人工智能python
1什么是风格迁移howto:还是cnn,输入是图像,输出和上一章相比,不是数字,而是图像。意义:给一张图像输入,可以输出指定风格化处理的图像2风格迁移发展简史早期针对图像局部特征(纹理生成)或特定风格/场景建立模型,迁移时通过套用模型提取图片纹理或转化风格。缺点是特征/风格单一,无法通用。2015lerogatys尝试用神经网络做风格迁移,效果很好,并成为了主流。神经网络做风格迁移前,主要有纹理生
- 4. 生成对抗网络(GAN):生成模型的崛起
Network_Engineer
机器学习python深度学习机器学习算法人工智能
引言生成对抗网络(GAN)是近年来深度学习领域中最具创新性和影响力的模型之一。GAN通过生成器和判别器的对抗性训练,能够生成逼真的图像、音频、文本等数据,广泛应用于图像生成、数据增强、风格迁移等任务中。本篇博文将深入解析GAN的基本原理、训练过程,以及其在各类生成任务中的应用。1.GAN的基本架构生成对抗网络(GAN)由两个核心部分组成:生成器(Generator)和判别器(Discriminat
- AI自动生成视频Runway Gen-2免费试用指南
wrangler_csdn
人工智能AI作画ai
最近《瞬息全宇宙》幕后技术公司Runway公开了旗下具有AI功能的视频编辑工具Gen-2,用户可以直接使用文本提示生成逼真的视频内容。小编最近也试用了一下生成效果非常炸裂:文字生成视频提示词生成视频:无人机拍摄的山脉画面。修改视频用提示词修改视频:一隻白色皮毛上有黑色斑點的狗。视频风格迁移目前免费用户可以使用Gen-2生成5个5秒时长的视频。使用指南Gen-2-BestAIApp
- DeepArt——AI美术创作工具,能够帮助生成视觉内容
爱研究的小牛
AIGC人工智能深度学习
一、DeepArt的介绍DeepArt是一种基于深度学习的艺术风格迁移应用,能够将输入图像转换成具有特定艺术风格的输出图像。它的核心技术主要依赖于深度卷积神经网络(CNN)和风格迁移算法,能够将著名艺术作品的风格应用到用户的照片或图像上,从而创造出独具特色的艺术效果。二、DeepArt的使用选择内容图像和风格图像:用户首先需要上传一张内容图像,即他们希望转换成艺术风格的图像。接着,可以从提供的艺术
- 计算机设计大赛 深度学习图像风格迁移
iuerfee
python
文章目录0前言1VGG网络2风格迁移3内容损失4风格损失5主代码实现6迁移模型实现7效果展示8最后0前言优质竞赛项目系列,今天要分享的是深度学习图像风格迁移-opencvpython该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:https://gitee.com/dancheng-senior
- 生成对抗网络 Generative Adversarial Nets(GAN)详解
Longlongaaago
机器学习论文生成对抗网络机器学习深度学习
生成对抗网络GenerativeAdversarialNets(GAN)详解近几年的很多算法创新,尤其是生成方面的task,很大一部分的文章都是结合GAN来完成的,比如,图像生成、图像修复、风格迁移等等。今天主要聊一聊GAN的原理和推导。github:http://www.github.com/goodfeli/adversarial论文:https://arxiv.org/abs/1406.26
- MATLAB环境下生成对抗网络系列(11种)
哥廷根数学学派
信号处理深度学习图像处理matlab生成对抗网络开发语言
为了构建有效的图像深度学习模型,数据增强是一个非常行之有效的方法。图像的数据增强是一套使用有限数据来提高训练数据集质量和规模的数据空间解决方案。广义的图像数据增强算法包括:几何变换、颜色空间增强、核滤波器、混合图像、随机擦除、特征空间增强、对抗训练、生成对抗网络和风格迁移等内容。增强的数据代表一个分布覆盖性更广、可靠性更高的数据点集,使用增强数据能够有效增加训练样本的多样性,最小化训练集和验证集以
- AI画家第四弹——利用Flask发布风格迁移API
雇个城管打天下
image上篇文章介绍了pythonweb开发中经常使用到的一个框架flask,如果有遗忘的,可以点此回顾AI画家第三弹——毕业设计大杀器之Flask,本文的主要任务就是完成上篇文章末尾的要求,利用Flask发布你自己的风格迁移API。本文源码可在微信公众号「01二进制」后台回复「风格迁移API」获得需求分析我们知道软件工程的第一步就是需求分析,放在这里就是要知道我们需要实现的功能是什么样的。我画
- 温州大学《深度学习》课程课件(十、人脸识别与神经风格迁移)
风度78
神经网络人脸识别深度学习人工智能计算机视觉
这学期我上的另一门课是本科生的《深度学习》,主要用的是吴恩达老师的《深度学习》视频课的内容。使用教材:吴恩达《深度学习》课程笔记课外参考书:《深度学习》,人民邮电出版社,IANGOODFELLOW等,2017年出版课程资源下载链接:https://github.com/fengdu78/deeplearning_ai_books开放了pdf版本的ppt下载:https://github.com/f
- 人工智能(pytorch)搭建模型23-pytorch搭建生成对抗网络(GAN):手写数字生成的项目应用
微学AI
(Pytorch)搭建模型人工智能pytorch生成对抗网络GAN
大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型23-pytorch搭建生成对抗网络(GAN):手写数字生成的项目应用。生成对抗网络(GAN)是一种强大的生成模型,在手写数字生成方面具有广泛的应用前景。通过生成逼真的手写数字图像,GAN可以用于数据增强、图像修复、风格迁移等任务,提高模型的性能和泛化能力。生成对抗网络在手写数字生成领域具有广泛的应用前景。主要应用场景包括数
- 计算机视觉-风格迁移
白云如幻
计算机视觉人工智能深度学习
风格迁移摄影爱好者也许接触过滤波器。它能改变照片的颜色风格,从而使风景照更加锐利或者令人像更加美白。但一个滤波器通常只能改变照片的某个方面。如果要照片达到理想中的风格,可能需要尝试大量不同的组合。这个过程的复杂程度不亚于模型调参。如何使用卷积神经网络,自动将一个图像中的风格应用在另一图像之上,即风格迁移(styletransfer)。这里我们需要两张输入图像:一张是内容图像,另一张是风格图像。我们
- 大创项目推荐 题目:基于深度学习的图像风格迁移 - [ 卷积神经网络 机器视觉 ]
laafeer
python
文章目录0简介1VGG网络2风格迁移3内容损失4风格损失5主代码实现6迁移模型实现7效果展示8最后0简介优质竞赛项目系列,今天要分享的是基于深度学习卷积神经网络的花卉识别该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:原
- 第8章 python深度学习——波斯美女
weixin_42963026
深度学习美女人工智能
第8章生成式深度学习本章包括以下内容:使用LSTM生成文本实现DeepDream实现神经风格迁移变分自编码器了解生成式对抗网络人工智能模拟人类思维过程的可能性,并不局限于被动性任务(比如目标识别)和大多数反应性任务(比如驾驶汽车),它还包括创造性活动。2015年夏天,我们见识了Google的DeepDream算法,它能够将一张图像转化为狗眼睛和错觉式伪影(pareidolicartifact)混合
- KAGGLE · GETTING STARTED CODE COMPETITION 图像风格迁移 示例代码阅读
Karen_Yu_
tensorflowGANkeras计算机视觉风格迁移
本博文阅读的代码来自于I’mSomethingofaPainterMyself|Kaggle倾情推荐:MonetCycleGANTutorial|Kaggle数据集说明I’mSomethingofaPainterMyself|KaggleFilesmonet_jpg-300Monetpaintingssized256x256inJPEGformatmonet_tfrec-300Monetpaint
- 不容错过的免费AI绘图软件:释放你的创造力
白话Learning
ai作画
随着人工智能技术的不断进步,AI绘图软件已经成为许多艺术家和设计师的重要工具。在这篇文章中,我们将介绍一些常见的免费AI绘图软件,并探讨它们的功能、使用方法以及为何值得一试。一、AI绘图软件1.DeepArt.io主要功能:·图片转换:将照片转换成艺术风格的画作。·风格迁移:将一种艺术风格应用到另一幅画作上。·创意生成:基于AI算法生成新的艺术灵感。用户界面与体验:DeepArt.io的用户界面直
- Stable Diffusion 长视频真人动画风格互转
Yuezero_
stablediffusion音视频
StableDiffusionTemporal-Kit和EbSynth从娱乐到商用1.TemporalKit和EbSynth1.1提取关键帧1.2关键帧风格迁移1.3生成序列帧2.真人转卡通3.卡通转真人4.编辑技巧5.ControlNet+TemporalNet+达芬奇Fusion6.RerenderAVideo7.DiffSynth-Studio基于SD的风格化编辑主流方式:ControlNe
- Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
Cat丹
目标:实时任意风格转移方法:adaptiveinstancenormalization原理:图像的风格就是特征图各个featurechannel跨空间的统计信息,比如mean和variance。迁移各个channel的mean和variance就可以实现风格迁移。效果:可实时实现任意风格图片转移,并且可以控制content-styletrade-off,styleinterpolation,col
- diffusion 和 gan 的优缺点对比
木水_
深度学习gandiffusion
sample速度GAN更快,Diffusion需要迭代更多次。训练难度GAN的训练可能是不稳定的,容易出现模式崩溃和训练振荡等问题。Diffusion训练loss收敛性好,比较平稳。模拟分布连续性Diffusion相较于GAN可以模拟更加复杂,更加非线性的分布。但是Diffusion模拟的分布没有GAN连续性好,特别是在video风格迁移的时候,可能帧之间的关系会有很大差别。Diffusion就可
- OpenCV 新版滴 4.5.1 发布啦!
AAI机器之心
opencv人工智能计算机视觉机器学习dnnKNNcnn
发布亮点:OpenCVGithub项目终于突破50000stars!新的里程碑~这次发布的特性包括:集成更多的GSoC2020项目的结果,包括:开发了OpenCV.jsDNN模块,以方便再网页中使用,并提供了相关教程。图像分类目标检测风格迁移语义分割姿态估计OpenCV.jsWASMSIMD优化2.0,网页端调用OpenCV更快了新增文本检测和识别高级APISIFT算法优化,主要是16位整型高斯滤
- 【论文研读】基于卷积神经网络的图像局部风格迁移
lexonT
自2015年Gatys首次提出神经艺术风格迁移框架以来,图像风格迁移逐渐成为计算机图形学和计算机视觉领域的一个研究热点,但是当前针对图像风格迁移的研究大多难以提取图像中的局部进行风格迁移,而将重心放在图像全局风格迁移上,针对局部风格迁移这一研究领域上的空白,浙江工业大学缪永伟与浙江理工大学、中科院自动化研究所合作发表了《基于卷积神经网络的图像局部风格迁移》一文。文中提出了一种基于卷积神经网络的图像
- Pytorch 和 TensorFlow 对比学习笔记,第4周:综合应用和实战项目 Day 21-24: 实战项目
M.D
pytorchtensorflow学习
第4周:综合应用和实战项目Day21-24:实战项目项目目标:开始一个小型项目,如图像分类、文本生成或其他您感兴趣的任务。应用到目前为止所学的知识。项目选择:**图像分类:**使用Pytorch或TensorFlow构建一个能够识别不同类别图像的模型。文本生成:创建一个文本生成模型,例如聊天机器人或者诗歌创作模型。**自选项目:**根据个人兴趣选择其他类型的项目,如语音识别、风格迁移等。实施步骤:
- 图像生成之pix2pix
Wilson_Hank
深度学习计算机视觉人工智能
简要介绍利用GAN做imagetranslation的开山之作:Image-to-ImageTranslationwithConditionalAdversarialNetworks自然语言处理领域有text2text,所以自然而然图像领域也有image2image。作者提出pix2pix,即利用CGAN实现一个解决各种image2image任务(语义分割,边缘检测、风格迁移等等)的通用解决方案和
- Stable Diffusion中几个常用的文件夹
CCSBRIDGE
stablediffusion
常见文本到图像的目录(outputs/txt2img-images):存储从文本描述生成的图像。这类目录通常用于保存用户输入文本提示后,系统生成的图像。图像到图像的目录(outputs/img2img-images):存储基于现有图像进行修改或再创作后生成的新图像。这是用于图像编辑或风格迁移任务的输出位置。附加或实验性质的输出目录(outputs/extras-images):可能用于存储实验性或
- PyTorch深度学习实战(29)——神经风格迁移
盼小辉丶
深度学习pytorchAIGC
PyTorch深度学习实战(29)——神经风格迁移0.前言1.神经风格迁移原理1.1模型介绍1.2GramMatrix的重要性2.神经风格迁移模型构建策略3.使用Keras实现神经风格迁移小结系列链接0.前言神经风格迁移(NeuralStyleTransfer)是一种基于深度学习的技术,用于将两个不同图像的风格进行合成,生成新的图像。它通过将一个参考图像的风格应用于另一个内容图像,以创造出独特而富
- AI绘画以图生图怎么用?
jianewang
AI作画人工智能
AI绘画的以图生图功能,也称为“风格迁移”或“图像转换”,主要是通过将一张图片作为参考,然后使用AI技术将其转换成另一种风格。那么AI绘画以图生图怎么用?彩平图1、打开AI绘画选择以图生图模式2、上传平面图,输入设置好的关键词。这些关键词将指导AI如何渲染彩平图,包括风格、细节、背景颜色等,将帮助AI更好地理解您的需求。3、风格选择彩平图,并设置图片贴合度,贴合度决定了生成的图片与原始平面图的匹配
- 常见的生成模型有哪些?
CA&AI-drugdesign
GPT4神经网络人工智能深度学习
生成模型是深度学习领域的一类模型,它们的目标是学习如何生成数据的分布,从而能够生成新的、与真实数据类似的样本。以下是一些主要的生成模型:生成对抗网络(GANs):GAN由两个部分组成:生成器(生成新数据)和判别器(区分真实数据和生成的数据)。这两部分在训练过程中相互竞争,提高彼此的性能。应用:图像生成、艺术创作、数据增强、风格迁移等。变分自编码器(VAEs):VAE是一种基于贝叶斯推理的生成模型,
- 大创项目推荐 深度学习图像风格迁移
laafeer
python
文章目录0前言1VGG网络2风格迁移3内容损失4风格损失5主代码实现6迁移模型实现7效果展示8最后0前言优质竞赛项目系列,今天要分享的是深度学习图像风格迁移-opencvpython该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:https://gitee.com/dancheng-senior
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&