HDU 6590

/*
凸包相交
对于不能形成凸包的点集可以对线段进行叉积,从而判断两个点集是否相交
*/

#include
using namespace std;
const int N = 1e5 + 10;
double eps = 1e-15;
double pi = acos(-1);
struct Point{
	double x, y;
	Point(double x = 0, double y = 0) :x(x), y(y) {}
};
typedef Point Vector;
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }  //两向量(或两点)相加
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }  //两向量(或两点)相减
Vector operator * (Vector A, double B) { return Vector(A.x*B, A.y*B); }  //将向量A(或点A)x,y坐标均加上B
Vector operator / (Vector A, double B) { return Vector(A.x / B, A.y / B); }  //将向量B(或点B)x,y坐标均减去B
int dcmp(double x) {
	if (fabs(x) < eps)return 0;
	else return x < 0 ? -1 : 1;
}
bool operator < (const Point &a, const Point &b) {
	return dcmp(a.x - b.x) < 0 || (dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) < 0);
}
bool operator == (const Point &a, const Point &b) {
	return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}
double Cross(Vector A, Vector B) {  //两向量求叉积
	return A.x*B.y - A.y*B.x;
}
double Dot(Vector A, Vector B) {  //两向量求点积
	return A.x*B.x + A.y*B.y;
}
Vector Rotate(Vector A, double rad) {  //向量翻转
	return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad));  
}
int tubao(Point *p, int n, Point *ch) {  //建立凸包
	sort(p, p + n);
	int m = 0;
	for (int i = 0; i < n; i++) {
		while (m > 1 && Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2]) <= 0)m--;
		ch[m++] = p[i];
	}
	int k = m;
	for (int i = n - 2; i >= 0; i--) {
		while (m > k&&Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2]) <= 0)m--;
		ch[m++] = p[i];
	}
	if (n > 1)m--;
	return m;
}
void readp(Point &A,double x1,double x2) {
	A.x = x1;
	A.y = x2;
}
bool onsegment(Point p, Point a1, Point a2) {  //判断点是否在线段上
	if (p == a1 || p == a2)return false;
	return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;  //dcmp(Cross(a1 - p, a2 - p)) == 0判断a1,a2是否与p共线,dcmp(Dot(a1 - p, a2 - p)) < 0p是否在线段中间
}
bool segmentcross(Point a1, Point a2, Point b1, Point b2) {  //判断是否存在线段相交
	if (a1 == b1 || a1 == b2 || a2 == b1 || a2 == b2)return true;
	double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
		c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
	return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
}
int intubao(Point *ch, int n, Point p) {
	Vector A, B;
	int flag = 0;
	for (int i = 0; i < n; i++) {
		A = ch[(i + 1) % n] - ch[i];
		B = p - ch[i];
		if (onsegment(p, ch[i], ch[(i + 1) % n])) {  //判断点p是否在凸包外围
			flag = -1;
			break;
		}
		else if (Cross(A, B) > 0) {  //如果点p在凸包内,对于所有凸包外围的线段都有Cross(A,B)>0;
			flag++;
		}
	}
	if (flag == -1 || flag == n)return 1;
	return 0;
}
int T, n, m;
Point p1[N], ch1[N], p2[N], ch2[N];
int main() {
	scanf("%d", &T);
	while (T--) {
		scanf("%d", &n);
		int cnt1, cnt2;
		cnt1 = cnt2 = 0;
		for (int i = 1; i <= n; i++) {
			double x1, x2;
			int f;
			scanf("%lf%lf%d", &x1, &x2, &f);
			if (f == 1)readp(p1[cnt1++], x1, x2);
			else if (f == -1)readp(p2[cnt2++], x1, x2);
		}
		int len1=tubao(p1, cnt1, ch1);
		int len2=tubao(p2, cnt2, ch2);
		bool flag = true;
		for (int i = 0; i < len2; i++) {
			if (intubao(ch1, len1, ch2[i]))
			{
				flag = false;
				break;
			}
		}
		if (flag) {
			for (int i = 0; i < len1; i++) {
				if (intubao(ch2, len2, ch1[i]))
				{
					flag = false;
					break;
				}
			}
		}
		if (flag) {
			for (int i = 0; i < len1; i++) {
				for (int j = 0; j < len2; j++) {
					if (segmentcross(ch1[(i + 1) % len1], ch1[i], ch2[(j + 1) % len2], ch2[j]))flag = false;
					if (!flag)break;
				}
				if (!flag)break;
			}
		}
		printf(flag ? "Successful!\n" : "Infinite loop!\n");
	}
	return 0;
}

你可能感兴趣的:(HDU 6590)