- 1185. 单词游戏(欧拉路径)
Landing_on_Mars
#欧拉回路和欧拉路径游戏图论
活动-AcWing有N个盘子,每个盘子上写着一个仅由小写字母组成的英文单词。你需要给这些盘子安排一个合适的顺序,使得相邻两个盘子中,前一个盘子上单词的末字母等于后一个盘子上单词的首字母。请你编写一个程序,判断是否能达到这一要求。输入格式第一行包含整数T,表示共有T组测试数据。每组数据第一行包含整数N,表示盘子数量。接下来N行,每行包含一个小写字母字符串,表示一个盘子上的单词。一个单词可能出现多次。
- 12118 - Inspector‘s Dilemma (UVA)
天天AZ
UVA图论算法
题目链接如下:OnlineJudge脑雾严重,这道题一开始我想的方向有问题.....后来看了别人的题解才写出来的.....用的是欧拉路径的充要条件;以及数连通块。需要加的高速路数目=连通块个数-1+sum(每个连通块中连成欧拉路径需要加的高速路数目)。#include#include//#definedebugintV,E,T,a,b,tot,odd,kase=0;intarc[1001][100
- 欧拉路 与 欧拉回路
Teresa_李庚希
定义欧拉路:从图中一个点s出发,到图中的一点t,经过每条边且每条边仅经过一次欧拉回路:欧拉路中s==t判定条件无向图所有边联通存在欧拉路:度数为奇数的点的个数为0或2存在欧拉回路:度数为奇数的点的个数为0有向图所有边联通存在欧拉路:所有点的入度==出度或除起点(出度==入度+1)和终点(入度==出度+1)外,其他点的入度==出度存在欧拉回路:除起点(出度==入度+1)和终点(入度==出度+1)外,
- 欧拉路径、欧拉回路、欧拉图傻傻分不清楚?看这一篇就够了!
一棵油菜花
算法篇深度优先算法c++笔记图论
推荐在cnblogs阅读欧拉路径、回路、图前言当一手标题党,快乐~之前一直分不清楚,写篇笔记分辨一下。欧拉路径可以一笔画的路径,称为欧拉路径。不要求起点终点为同一点。判定:有向图:图中只有一个出度比入度大111的点(起点),与一个入度比出度大111的点(终点),其余点出入度相等。无向图:图中只有两个奇点(起点和终点),其余点都是偶点。当然,将有向边视作无向边后,路径必须连通。欧拉回路在欧拉路径的基
- 1380 一笔画问题
tiger_mushroom
算法深度优先图论
如果一个无向图存在一笔画,则一笔画的路径叫做欧拉路,如果最后又回到起点,那这个路径叫做欧拉回路。#includeusingnamespacestd;#defineN510intg[N][N],d[N],c[N],n,m,reckon,oddity_point,lt;voiddfs(inti){for(intj=1;j>n>>m;intx,y;memset(g,0,sizeof(g));for(in
- 欧拉回路&欧拉路【详解】
tiger_mushroom
欧拉回路欧拉路深度优先算法
1.引入2.概念3.解决方法4.例题5.回顾1.引入经典的七桥问题哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。可否走过这样的七座桥,而且每桥只走过一次?你怎样证明?后来大数学家欧拉把它转化成一个几何问题——一笔画问题。我们的大数学家欧拉,找到了它的重要条件1.奇点的数目不是0个就是2个奇点:就是度为奇数(有向图是判断出度与入度是否相等),反之为偶点有向图1、连
- 拆点成边来建图 +BEST定理:ABC336G
Qres821
图论BEST定理
https://www.luogu.com.cn/problem/AT_abc336_g考虑一个状态(a,b,c,d)(a,b,c,d)(a,b,c,d)要出现kkk次,如果相当于每次加1个字符,相当于要从(a,b,c)(a,b,c)(a,b,c)走到(b,c,d)(b,c,d)(b,c,d)走kkk次。因此我们就可以根据这样建图。问题转化为求一个图的欧拉路径/欧拉回路条数。由于起终点相同的边没有
- AtCoder Beginner Contest 336 G. 16 Integers(图计数 欧拉路径转欧拉回路 矩阵树定理 best定理)
Code92007
知识点总结#图计数#欧拉回路/欧拉路径图计数欧拉路径欧拉回路best定理
题目给16个非负整数,x[i∈(0,1)][j∈(0,1)][k∈(0,1)][l∈(0,1)]求长为n+3的01串的方案数,满足长度为4的ijkl(2*2*2*2,16种情况)串恰为x[i][j][k][l]个答案对998244353取模思路来源https://www.cnblogs.com/tzcwk/p/matrix-tree-best-theroem.html矩阵树定理-OIWiki知识点
- 代码随想录算法训练营第三十天|总结、332.重新安排行程、51.N皇后、37.解数独
Buuuleven.(程序媛
算法数据结构javaleetcode开发语言
代码随想录(programmercarl.com)总结332.重新安排行程欧拉通路和欧拉回路:欧拉通路:对于图G来说,如果存在一条通路包含G的所有边,则该通路称为欧拉通路,也称欧拉路径。欧拉回路:如果欧拉路径是一条回路,那么称其为欧拉回路。欧拉图:含有欧拉回路的图是欧拉图。题目中说必然存在一条有效路径,所以至少是半欧拉图,也可以是欧拉图。深度优先搜索(DFS):对每一个可能的分支路径深入到不能再深
- 【算法每日一练]-图论(保姆级教程篇14 )#会议(模板题) #医院设置 #虫洞 #无序字母对 #旅行计划 #最优贸易
亦歌希望你变强啊
图论算法图论深度优先数据结构c++
目录今日知识点:求数的重心先dfs出d[1]和cnt[i],然后从1进行dp求解所有d[i]两两点配对的建图方式,检查是否有环无向图欧拉路径+路径输出topo+dp求以i为终点的游览城市数建立分层图转化盈利问题成求最长路会议(模板题)医院设置虫洞无序字母对旅行计划最优贸易会议(模板题)思路:补充:首先,阅读题目可以看出来,这道题目实际上就是求树的重心。树的重心:找到一个点,其所有的子树中最大的子树
- C++ 图论算法之欧拉路径、欧拉回路算法(一笔画完)
一枚大果壳
c++图论算法欧拉欧拉回路
公众号:编程驿站1.欧拉图本文从哥尼斯堡七桥的故事说起。哥尼斯堡城有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥连结起来。当时那里的居民热衷于一个话题:怎样不重复地走遍七桥,最后回到出发点。这也是经典的一笔画完问题。1736年瑞士数学家欧拉(Euler)发表了论文《哥尼斯堡七桥问题》。论文中使用图论理论解决哥尼斯堡七桥问题,欧拉图由此而来。论文中欧拉证明了如下定理:一个非空连通图当且仅当每
- 【题解】洛谷P3443 [POI2006] LIS-The Postman 题解
conti123
C++题解c++
P3443题意分析Code题意原题链接求一条以111为起点的欧拉回路,使得给定路口序列在路线及求出的欧拉回路序列中出现。分析首先,肯定是要存在欧拉路径的。而有向图中存在欧拉路径须满足以下条件:图去掉孤立点后联通和每个点的入度等于出度。注意到规定的每个路口序列都必须在路线中连续出现,及如果我们存在路线,我们不能改变走这些规定的序列的顺序。那么相当于这些边是被限制死的了,不能改变,所以可以将它们合并为
- 最小字典序欧拉路径
mxYlulu
队内集训心得欧拉路径
欧拉路就是所有边都走一次,也只走一次。欧拉回路就是能够回到起点,欧拉路径没有这么多要求。算法本质是这样的:从起点开始,尽可能地不去走桥(走完之后会把图分成两半),而去走其他边,这样的输出是欧拉路径。但是判桥的过程较为麻烦,我们可以采取这样的手段。如果起点开始有两条边,一条边是应该走的边,另一条是桥。如果我们采用dfsdfsdfs的方式先遍历到底,直到无路可走的时候才加入答案栈中,我们容易知道的是最
- PAT 甲级 刷题日记|A 1126 Eulerian Path (25 分)
九除以三还是三哦
单词积累even偶数odd奇数Eulerianpath欧拉路径connectedgraph连通图题目Ingraphtheory,anEulerianpathisapathinagraphwhichvisitseveryedgeexactlyonce.Similarly,anEuleriancircuitisanEulerianpathwhichstartsandendsonthesameverte
- 用欧拉路径判断图同构推出reverse合法性:1116T4
Qres821
欧拉路径构造
http://cplusoj.com/d/senior/p/SS231116D假设我们要把aaa变成bbb,我们在aia_iai和ai+1a_{i+1}ai+1之间连边,bbb同理,则aaa能变成bbb的充要条件是两图A,BA,BA,B同构。必要性显然,因为无论如何reverse都不会改变图的形态。我们现在要证明的是图的任意欧拉路径都可以通过reverse构造出来。考虑第一个ai≠bia_i\ne
- 欧拉回路和欧拉路径
王木木很酷_
#数据结构与算法算法数据结构java开发语言
目录欧拉回路基础欧拉回路的定义欧拉回路的性质判断图中是否存在欧拉回路的java代码实现寻找欧拉回路的三个算法Hierholzer算法详细思路代码实现欧拉路径欧拉路径的定义欧拉路径的性质欧拉回路基础欧拉回路的定义欧拉回路遍历了所有的边,也就意味着遍历了所有的点,但这并不能代表有欧拉回路的地方都有哈密尔顿回路的,如下图的例子。欧拉回路的性质上图四个点的度数都是奇数,所以不存在欧拉回路。欧拉回路的条件:
- 图论11-欧拉回路与欧拉路径+Hierholzer算法实现
大大枫
图论图论算法
文章目录1欧拉回路的概念2欧拉回路的算法实现3Hierholzer算法详解4Hierholzer算法实现4.1修改Graph,增加API4.2Graph.java4.3联通分量类4.4欧拉回路类1欧拉回路的概念2欧拉回路的算法实现privatebooleanhasEulerLoop(){CCcc=newCC(G);if(cc.count()>1)returnfalse;for(intv=0;vre
- 图论(欧拉路径)
炒饭加蛋挞
图论
理论:所有边都经过一次,若欧拉路径,起点终点相同,欧拉回路有向图欧拉路径:恰好一个out=in+1,一个in=out+1,其余in=out有向图欧拉回路:所有in=out无向图欧拉路径:两个点度数奇,其余偶无向图欧拉回路:全偶基础练习P7771【模板】欧拉路径P2731[USACO3.3]骑马修栅栏RidingtheFencesP1341无序字母对进阶P3520[POI2011]SMI-Garba
- 学习笔记:欧拉图 & 欧拉路
tsqtsqtsq0309
学习笔记
欧拉图&欧拉路定义图中经过所有边恰好一次的路径叫欧拉路径(也就是一笔画)。如果此路径的起点和终点相同,则称其为一条欧拉回路。欧拉回路:通过图中每条边恰好一次的回路。欧拉通路:通过图中每条边恰好一次的通路。欧拉图:具有欧拉回路的图。半欧拉图:具有欧拉通路但不具有欧拉回路的图。性质欧拉图中所有顶点的度数都是偶数。若GGG是欧拉图,则它为若干个环的并,且每条边被包含在奇数个环内。判别法无向图是欧拉图当且
- 读图数据库实战笔记01_初识图
躺柒
读图数据库实战图数据库TinkerPopGremlin图
1.图论1.1.起源于莱昂哈德·欧拉在1736年发表的一篇关于“哥尼斯堡七桥问题”的论文1.2.要解决这个问题,该图需要零个或两个具有奇数连接的节点1.3.任何满足这一条件的图都被称为欧拉图1.4.如果路径只访问每条边一次,则该图具有欧拉路径1.5.如果路径起点和终点相同,则该图具有欧拉回路,或称为欧拉环2.图2.1.顶点和边的集合2.2.示例2.2.1.路线图2.2.2.组织结构图2.3.当要思
- PAT甲级1126 Eulerian Path (25 分)
ladedah
什么是欧拉路径?欧拉路径是无向连通图中的一条路径,该路径经过图的每一条边且仅经过一次。如果路径起点和终点相同,则称“欧拉回路”。具有欧拉回路的图称“欧拉图”。如何判断图中是否存在欧拉路径?由欧拉路径的定义可知,若图中存在欧拉路径,则该图必是一个连通图(1),其次,图中度数为奇数的点的个数必须为0或2(2),若度数为奇数的点的个数为0则是欧拉回路,若个数为2则是非欧拉回路的欧拉路径在此题中称为"Se
- 信息学奥赛一本通(C++版) 第三部分 数据结构 第四章 图论算法
mrcrack
信息学奥赛一本通(C++版)NOIP提高组复赛
总目录详见:https://blog.csdn.net/mrcrack/article/details/86501716信息学奥赛一本通(C++版)第三部分数据结构第四章图论算法http://ybt.ssoier.cn:8088/第一节图的遍历//1341【例题】一笔画问题//在想,是输出欧拉路,还是欧拉回路//从哪点开始遍历,//点的数据范围,边的数据范围//欧拉路的理解,经过所有点,欧拉回路的
- cf1038E(暴力DP/bfs)
qkoqhh
DPbfs
一个块可以看做是无向图上的边,然后就变成了在无向图上跑欧拉路径。。4个点应该是可以随便暴力了。。不过边比较多。。如果考虑哪些边不走,能注意到2条重边可以构成一个简单环。。所以如果不走肯定是亏的。。所以对重边来说,最多只能不经过一条边。。而本质不同的边其实也就8条。。拆出来就变成16条。。然后暴力bfs/DP或者直接爆搜应该就可以了。。。#include#defineinc(i,l,r)for(in
- [cf1038E][欧拉路]
aiyuneng5167
数据结构与算法
http://codeforces.com/contest/1038/problem/EE.MaximumMatchingtimelimitpertest2secondsmemorylimitpertest256megabytesinputstandardinputoutputstandardoutputYouaregivennnblocks,eachofthemisoftheform[color
- 欧拉路径(欧拉环游、欧拉回路)
thdwx
算法数据结构图论
一个流行的游戏是用铅笔画这些图,但是图中的每一条边都只能被画一次,在画图过程中铅笔不能离开纸面。难度更高的问题是,不光要一笔画完图,并且起点和终点还要落在同一处。如果我们将上面的三个图形都看作图数据结构,那么这个画图问题就是一个图论问题。如果在一个无向图中,找到一条路径,使得每一条边都被访问并且只被访问一次,那么这条路径就称为欧拉路径。如果起点与终点一致就成为欧拉回路,否则就是欧拉环游。我们能想到
- 寒假水题集
2013hlq20
OIerC++
2月1日1、UVALive4864很水的数位dp2、CF81D随便构造(好像我用的那个构造本来是错的,但是AC了)3、UVALive5058似乎涉及到拓扑序,组合数之类,但是要先构造一棵树4、CF486E正反两遍nlogn的LIS得到的信息2月2日1、CFGym100016D简单的推理2、CFGym100016J最初以为是贪心,结果发现没有贪心策略,然后就dp了3、CF508D这么裸的欧拉路径,都
- 并查集的相关题目
qdlgdx_lsy
算法并查集pojhdu
这几天一直在刷并查集的题目,对于并查集的较难的题目,等着功力深厚了在做吧。先说一下杭电上面的题目:并查集专题链接http://acm.hdu.edu.cn/problemclass.php?id=721hdu1116:先用并查集判断图是否联通,再看是不是存在欧拉路径。(利用欧拉路径需要满足的顶点度数的要求).要注意题意的转换hdu1142:这题没有用并查集解决。先用dijkstra算法求出终点到其
- 欧拉路径 O(E)
千秋TʌT
java算法前端
|欧拉路径O(E)|INIT:adj[][]置为图的邻接表;cnt[a]为a点的邻接点个数;|CALL:elpath(0);注意:不要有自向边\*==================================================*/intadj[V][V],idx[V][V],cnt[V],stk[V],top;intpath(intv){for(intw;cnt[v]>0;v=
- 图系列(四)欧拉通路与欧拉回路
朝阳映木
数据结构与算法算法与数据结构欧拉回路有向图
欧拉通路与欧拉回路之前,写了图系列一二三,现在出四啦!这也意味着,对于图的部分,可以说50%以上常用的内容就已经过了一遍了。欧拉路的部分会稍微难一点,主要是我们要和定义打交道了。至于其他图的理论,我感觉比较有用的就不剩下多少了。可能就还有同构什么的,还会有一些探讨的空间。好长一段时间没有写东西啦!这篇文章,大致会经过几次修改完成。主要参考了Leetcode的这道题——重新安排行程。其实,这道题目,
- 欧拉路和欧拉回路
流苏贺风
图论算法算法
欧拉路和欧拉回路算法原理一,无向图的欧拉欧拉路欧拉回路二,有向图的欧拉欧拉路欧拉回路大前提:欧拉图都是联通的以下定义摘自oiwiki通过图中所有边恰好一次且行遍所有顶点的通路称为欧拉通路。通过图中所有边恰好一次且行遍所有顶点的回路称为欧拉回路。具有欧拉回路的无向图或有向图称为欧拉图。具有欧拉通路但不具有欧拉回路的无向图或有向图称为半欧拉图。非形式化地讲,欧拉图就是从任意一个点开始都可以一笔画完整个
- github中多个平台共存
jackyrong
github
在个人电脑上,如何分别链接比如oschina,github等库呢,一般教程之列的,默认
ssh链接一个托管的而已,下面讲解如何放两个文件
1) 设置用户名和邮件地址
$ git config --global user.name "xx"
$ git config --global user.email "
[email protected]"
- ip地址与整数的相互转换(javascript)
alxw4616
JavaScript
//IP转成整型
function ip2int(ip){
var num = 0;
ip = ip.split(".");
num = Number(ip[0]) * 256 * 256 * 256 + Number(ip[1]) * 256 * 256 + Number(ip[2]) * 256 + Number(ip[3]);
n
- 读书笔记-jquey+数据库+css
chengxuyuancsdn
htmljqueryoracle
1、grouping ,group by rollup, GROUP BY GROUPING SETS区别
2、$("#totalTable tbody>tr td:nth-child(" + i + ")").css({"width":tdWidth, "margin":"0px", &q
- javaSE javaEE javaME == API下载
Array_06
java
oracle下载各种API文档:
http://www.oracle.com/technetwork/java/embedded/javame/embed-me/documentation/javame-embedded-apis-2181154.html
JavaSE文档:
http://docs.oracle.com/javase/8/docs/api/
JavaEE文档:
ht
- shiro入门学习
cugfy
javaWeb框架
声明本文只适合初学者,本人也是刚接触而已,经过一段时间的研究小有收获,特来分享下希望和大家互相交流学习。
首先配置我们的web.xml代码如下,固定格式,记死就成
<filter>
<filter-name>shiroFilter</filter-name>
&nbs
- Array添加删除方法
357029540
js
刚才做项目前台删除数组的固定下标值时,删除得不是很完整,所以在网上查了下,发现一个不错的方法,也提供给需要的同学。
//给数组添加删除
Array.prototype.del = function(n){
- navigation bar 更改颜色
张亚雄
IO
今天郁闷了一下午,就因为objective-c默认语言是英文,我写的中文全是一些乱七八糟的样子,到不是乱码,但是,前两个自字是粗体,后两个字正常体,这可郁闷死我了,问了问大牛,人家告诉我说更改一下字体就好啦,比如改成黑体,哇塞,茅塞顿开。
翻书看,发现,书上有介绍怎么更改表格中文字字体的,代码如下
 
- unicode转换成中文
adminjun
unicode编码转换
在Java程序中总会出现\u6b22\u8fce\u63d0\u4ea4\u5fae\u535a\u641c\u7d22\u4f7f\u7528\u53cd\u9988\uff0c\u8bf7\u76f4\u63a5这个的字符,这是unicode编码,使用时有时候不会自动转换成中文就需要自己转换了使用下面的方法转换一下即可。
/**
* unicode 转换成 中文
- 一站式 Java Web 框架 firefly
aijuans
Java Web
Firefly是一个高性能一站式Web框架。 涵盖了web开发的主要技术栈。 包含Template engine、IOC、MVC framework、HTTP Server、Common tools、Log、Json parser等模块。
firefly-2.0_07修复了模版压缩对javascript单行注释的影响,并新增了自定义错误页面功能。
更新日志:
增加自定义系统错误页面功能
- 设计模式——单例模式
ayaoxinchao
设计模式
定义
Java中单例模式定义:“一个类有且仅有一个实例,并且自行实例化向整个系统提供。”
分析
从定义中可以看出单例的要点有三个:一是某个类只能有一个实例;二是必须自行创建这个实例;三是必须自行向系统提供这个实例。
&nb
- Javascript 多浏览器兼容性问题及解决方案
BigBird2012
JavaScript
不论是网站应用还是学习js,大家很注重ie与firefox等浏览器的兼容性问题,毕竟这两中浏览器是占了绝大多数。
一、document.formName.item(”itemName”) 问题
问题说明:IE下,可以使用 document.formName.item(”itemName”) 或 document.formName.elements ["elementName&quo
- JUnit-4.11使用报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing错误
bijian1013
junit4.11单元测试
下载了最新的JUnit版本,是4.11,结果尝试使用发现总是报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing这样的错误,上网查了一下,一般的解决方案是,换一个低一点的版本就好了。还有人说,是缺少hamcrest的包。去官网看了一下,如下发现:
- [Zookeeper学习笔记之二]Zookeeper部署脚本
bit1129
zookeeper
Zookeeper伪分布式安装脚本(此脚本在一台机器上创建Zookeeper三个进程,即创建具有三个节点的Zookeeper集群。这个脚本和zookeeper的tar包放在同一个目录下,脚本中指定的名字是zookeeper的3.4.6版本,需要根据实际情况修改):
#!/bin/bash
#!!!Change the name!!!
#The zookeepe
- 【Spark八十】Spark RDD API二
bit1129
spark
coGroup
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
object CoGroupTest_05 {
def main(args: Array[String]) {
v
- Linux中编译apache服务器modules文件夹缺少模块(.so)的问题
ronin47
modules
在modules目录中只有httpd.exp,那些so文件呢?
我尝试在fedora core 3中安装apache 2. 当我解压了apache 2.0.54后使用configure工具并且加入了 --enable-so 或者 --enable-modules=so (两个我都试过了)
去make并且make install了。我希望在/apache2/modules/目录里有各种模块,
- Java基础-克隆
BrokenDreams
java基础
Java中怎么拷贝一个对象呢?可以通过调用这个对象类型的构造器构造一个新对象,然后将要拷贝对象的属性设置到新对象里面。Java中也有另一种不通过构造器来拷贝对象的方式,这种方式称为
克隆。
Java提供了java.lang.
- 读《研磨设计模式》-代码笔记-适配器模式-Adapter
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 适配器模式解决的主要问题是,现有的方法接口与客户要求的方法接口不一致
* 可以这样想,我们要写这样一个类(Adapter):
* 1.这个类要符合客户的要求 ---> 那显然要
- HDR图像PS教程集锦&心得
cherishLC
PS
HDR是指高动态范围的图像,主要原理为提高图像的局部对比度。
软件有photomatix和nik hdr efex。
一、教程
叶明在知乎上的回答:
http://www.zhihu.com/question/27418267/answer/37317792
大意是修完后直方图最好是等值直方图,方法是HDR软件调一遍,再结合不透明度和蒙版细调。
二、心得
1、去除阴影部分的
- maven-3.3.3 mvn archetype 列表
crabdave
ArcheType
maven-3.3.3 mvn archetype 列表
可以参考最新的:http://repo1.maven.org/maven2/archetype-catalog.xml
[INFO] Scanning for projects...
[INFO]
- linux shell 中文件编码查看及转换方法
daizj
shell中文乱码vim文件编码
一、查看文件编码。
在打开文件的时候输入:set fileencoding
即可显示文件编码格式。
二、文件编码转换
1、在Vim中直接进行转换文件编码,比如将一个文件转换成utf-8格式
&
- MySQL--binlog日志恢复数据
dcj3sjt126com
binlog
恢复数据的重要命令如下 mysql> flush logs; 默认的日志是mysql-bin.000001,现在刷新了重新开启一个就多了一个mysql-bin.000002
- 数据库中数据表数据迁移方法
dcj3sjt126com
sql
刚开始想想好像挺麻烦的,后来找到一种方法了,就SQL中的 INSERT 语句,不过内容是现从另外的表中查出来的,其实就是 MySQL中INSERT INTO SELECT的使用
下面看看如何使用
语法:MySQL中INSERT INTO SELECT的使用
1. 语法介绍
有三张表a、b、c,现在需要从表b
- Java反转字符串
dyy_gusi
java反转字符串
前几天看见一篇文章,说使用Java能用几种方式反转一个字符串。首先要明白什么叫反转字符串,就是将一个字符串到过来啦,比如"倒过来念的是小狗"反转过来就是”狗小是的念来过倒“。接下来就把自己能想到的所有方式记录下来了。
1、第一个念头就是直接使用String类的反转方法,对不起,这样是不行的,因为Stri
- UI设计中我们为什么需要设计动效
gcq511120594
UIlinux
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用
- JBOSS服务部署端口冲突问题
HogwartsRow
java应用服务器jbossserverEJB3
服务端口冲突问题的解决方法,一般修改如下三个文件中的部分端口就可以了。
1、jboss5/server/default/conf/bindingservice.beans/META-INF/bindings-jboss-beans.xml
2、./server/default/deploy/jbossweb.sar/server.xml
3、.
- 第三章 Redis/SSDB+Twemproxy安装与使用
jinnianshilongnian
ssdbreidstwemproxy
目前对于互联网公司不使用Redis的很少,Redis不仅仅可以作为key-value缓存,而且提供了丰富的数据结果如set、list、map等,可以实现很多复杂的功能;但是Redis本身主要用作内存缓存,不适合做持久化存储,因此目前有如SSDB、ARDB等,还有如京东的JIMDB,它们都支持Redis协议,可以支持Redis客户端直接访问;而这些持久化存储大多数使用了如LevelDB、RocksD
- ZooKeeper原理及使用
liyonghui160com
ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper
- 程序员解决问题的60个策略
pda158
框架工作单元测试
根本的指导方针
1. 首先写代码的时候最好不要有缺陷。最好的修复方法就是让 bug 胎死腹中。
良好的单元测试
强制数据库约束
使用输入验证框架
避免未实现的“else”条件
在应用到主程序之前知道如何在孤立的情况下使用
日志
2. print 语句。往往额外输出个一两行将有助于隔离问题。
3. 切换至详细的日志记录。详细的日
- Create the Google Play Account
sillycat
Google
Create the Google Play Account
Having a Google account, pay 25$, then you get your google developer account.
References:
http://developer.android.com/distribute/googleplay/start.html
https://p
- JSP三大指令
vikingwei
jsp
JSP三大指令
一个jsp页面中,可以有0~N个指令的定义!
1. page --> 最复杂:<%@page language="java" info="xxx"...%>
* pageEncoding和contentType:
> pageEncoding:它