dyld简介及加载过程分析

dyld

dyld(the dynamic link editor)是苹果的动态链接器,是苹果操作系统一个重要组成部分,在系统内核做好程序准备工作之后,交由dyld负责余下的工作。

dyld加载过程分析

我们都知道程序的入口是main()函数,因此我们在程序的main()函数中打断点:

dyld简介及加载过程分析_第1张图片
E3E3C4FF4307E91CFA80F87BA6985AC4.png

结果发现只有一个start函数,通过lldb指令(bt,up)查看,也只能知道与libdyld.dylib有关,但具体的啥也没有。
于是我们尝试在类的load()方法中打断点:
dyld简介及加载过程分析_第2张图片
3473E87FCEE51D3F41626599771896EC.png

看到有一系列函数调用栈,点击第一个函数_dyld_start:
dyld简介及加载过程分析_第3张图片
5B256739113A7E6250E138B284B56016.png

查看汇编,发现是由dyldbootstrap::start(macho_header const , int, char const , long, macho_header const, unsigned long*)方法开始的。我们从该方法进行dyld的源码分析。
dyld简介及加载过程分析_第4张图片
15E41F06FEA6BB6D610F32A02EBE2D69.png

从源码中看到,dyldbootstrap::start主要做了根据滑块算出偏移地址(ASLR),rebase dyld,消息初始化,栈溢出保护, 最后调用了_main函数,整个app启动的关键函数就是这个_main()函数。

if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
        launchTraceID = dyld3::kdebug_trace_dyld_duration_start(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, (uint64_t)mainExecutableMH, 0, 0);
    }
    
    // Grab the cdHash of the main executable from the environment
    //1.配置相关环境操作
    uint8_t mainExecutableCDHashBuffer[20];
    const uint8_t* mainExecutableCDHash = nullptr;//主程序的哈希
    if ( hexToBytes(_simple_getenv(apple, "executable_cdhash"), 40, mainExecutableCDHashBuffer) )
        mainExecutableCDHash = mainExecutableCDHashBuffer;

    // Trace dyld's load
    notifyKernelAboutImage((macho_header*)&__dso_handle, _simple_getenv(apple, "dyld_file"));
#if !TARGET_IPHONE_SIMULATOR
    // Trace the main executable's load
    notifyKernelAboutImage(mainExecutableMH, _simple_getenv(apple, "executable_file"));
#endif

    uintptr_t result = 0;
    sMainExecutableMachHeader = mainExecutableMH;//主程序MarchO的头
    sMainExecutableSlide = mainExecutableSlide;//拿到主程序的slider,用于做重定向
#if __MAC_OS_X_VERSION_MIN_REQUIRED
    // if this is host dyld, check to see if iOS simulator is being run
    const char* rootPath = _simple_getenv(envp, "DYLD_ROOT_PATH");
    if ( (rootPath != NULL) ) {
        // look to see if simulator has its own dyld
        char simDyldPath[PATH_MAX]; 
        strlcpy(simDyldPath, rootPath, PATH_MAX);
        strlcat(simDyldPath, "/usr/lib/dyld_sim", PATH_MAX);
        int fd = my_open(simDyldPath, O_RDONLY, 0);
        if ( fd != -1 ) {
            const char* errMessage = useSimulatorDyld(fd, mainExecutableMH, simDyldPath, argc, argv, envp, apple, startGlue, &result);
            if ( errMessage != NULL )
                halt(errMessage);
            return result;
        }
    }
#endif

    CRSetCrashLogMessage("dyld: launch started");

    setContext(mainExecutableMH, argc, argv, envp, apple);//设置上下文(函数的参数,标识信息)

    // Pickup the pointer to the exec path.
    sExecPath = _simple_getenv(apple, "executable_path");

    //  Remove interim apple[0] transition code from dyld
    if (!sExecPath) sExecPath = apple[0];
    
    if ( sExecPath[0] != '/' ) {
        // have relative path, use cwd to make absolute
        char cwdbuff[MAXPATHLEN];
        if ( getcwd(cwdbuff, MAXPATHLEN) != NULL ) {
            // maybe use static buffer to avoid calling malloc so early...
            char* s = new char[strlen(cwdbuff) + strlen(sExecPath) + 2];
            strcpy(s, cwdbuff);
            strcat(s, "/");
            strcat(s, sExecPath);
            sExecPath = s;
        }
    }

    // Remember short name of process for later logging
    sExecShortName = ::strrchr(sExecPath, '/');
    if ( sExecShortName != NULL )
        ++sExecShortName;
    else
        sExecShortName = sExecPath;

    configureProcessRestrictions(mainExecutableMH);//配置进程相关信息,进程是否受限

#if __MAC_OS_X_VERSION_MIN_REQUIRED
    if ( !gLinkContext.allowEnvVarsPrint && !gLinkContext.allowEnvVarsPath && !gLinkContext.allowEnvVarsSharedCache ) {
        pruneEnvironmentVariables(envp, &apple);
        // set again because envp and apple may have changed or moved
        setContext(mainExecutableMH, argc, argv, envp, apple);
    }
    else
#endif
    {
        checkEnvironmentVariables(envp); //检测环境变量
        defaultUninitializedFallbackPaths(envp);
    }
#if __MAC_OS_X_VERSION_MIN_REQUIRED
    if (  ((dyld3::MachOFile*)mainExecutableMH)->supportsPlatform(dyld3::Platform::iOSMac)
      && !((dyld3::MachOFile*)mainExecutableMH)->supportsPlatform(dyld3::Platform::macOS)) {
        gLinkContext.rootPaths = parseColonList("/System/iOSSupport", NULL);
        gLinkContext.marzipan = true;
        if ( sEnv.DYLD_FALLBACK_LIBRARY_PATH == sLibraryFallbackPaths )
            sEnv.DYLD_FALLBACK_LIBRARY_PATH = sRestrictedLibraryFallbackPaths;
        if ( sEnv.DYLD_FALLBACK_FRAMEWORK_PATH == sFrameworkFallbackPaths )
            sEnv.DYLD_FALLBACK_FRAMEWORK_PATH = sRestrictedFrameworkFallbackPaths;
    }
#endif
    if ( sEnv.DYLD_PRINT_OPTS )
        printOptions(argv);
    if ( sEnv.DYLD_PRINT_ENV ) 
        printEnvironmentVariables(envp);
    getHostInfo(mainExecutableMH, mainExecutableSlide);//获取相关程序架构,到这里整个环境配置完成。

源码中分析得,_main函数开始主要是配置相关环境, 包括对主程序哈希,保存主程序MarchO的头,保存主slider(用于做重定向),设置上下文,配置进程相关信息(进程是否受限),检测环境变量,获取相关程序架构。
这里补充一下:

if ( sEnv.DYLD_PRINT_OPTS )
        printOptions(argv);
    if ( sEnv.DYLD_PRINT_ENV ) 
        printEnvironmentVariables(envp);

DYLD_PRINT_OPTS以及DYLD_PRINT_ENV编译的环境变量是可以在Xcode中配置的。


dyld简介及加载过程分析_第5张图片
FECB5322211D3F3EC686F33D44CE905C.png

配置后,在程序的启动过程中会输出启动的相关信息:


dyld简介及加载过程分析_第6张图片
1758CA317463883F5E9F8156B056AE27.png

_main函数中配置完环境变量后,接下来开始加载共享缓存库。
// load shared cache
    checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);

调用函数检查共享缓存是否被禁用,进入checkSharedRegionDisable函数,

static void checkSharedRegionDisable(const dyld3::MachOLoaded* mainExecutableMH, uintptr_t mainExecutableSlide)
{
#if __MAC_OS_X_VERSION_MIN_REQUIRED
    // if main executable has segments that overlap the shared region,
    // then disable using the shared region
    if ( mainExecutableMH->intersectsRange(SHARED_REGION_BASE, SHARED_REGION_SIZE) ) {
        gLinkContext.sharedRegionMode = ImageLoader::kDontUseSharedRegion;
        if ( gLinkContext.verboseMapping )
            dyld::warn("disabling shared region because main executable overlaps\n");
    }
#if __i386__
    if ( !gLinkContext.allowEnvVarsPath ) {
        //  use private or no shared region for suid processes
        gLinkContext.sharedRegionMode = ImageLoader::kUsePrivateSharedRegion;
    }
#endif
#endif
    // iOS cannot run without shared region
}

iOS必须开启共享缓存库才能运行。
检查共享缓存库开启后,开始调用mapSharedCache()函数加载共享缓存库,mapSharedCache()函数中又调用loadDyldCache()函数,

bool loadDyldCache(const SharedCacheOptions& options, SharedCacheLoadInfo* results)
{
    results->loadAddress        = 0;
    results->slide              = 0;
    results->errorMessage       = nullptr;

#if TARGET_IPHONE_SIMULATOR
    // simulator only supports mmap()ing cache privately into process
    return mapCachePrivate(options, results);
#else
    if ( options.forcePrivate ) {
        // mmap cache into this process only
        return mapCachePrivate(options, results);
    }
    else {
        // fast path: when cache is already mapped into shared region
        bool hasError = false;
        if ( reuseExistingCache(options, results) ) {
            hasError = (results->errorMessage != nullptr);
        } else {
            // slow path: this is first process to load cache
            hasError = mapCacheSystemWide(options, results);
        }
        return hasError;
    }
#endif
}

loadDyldCache()函数中,有三种情况,第一种仅加载到当前进程,第二种是已经加载过了,不需要做任何处理,第三种是第一次加载,调用mapCacheSystemWide加载。
加载完共享缓存库之后,接下来开始加载主程序mach-O。

sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);

_main函数中调用instantiateFromLoadedImage函数加载Match-O,进入instantiateFromLoadedImage函数,

static ImageLoaderMachO* instantiateFromLoadedImage(const macho_header* mh, uintptr_t slide, const char* path)
{
    // try mach-o loader
    if ( isCompatibleMachO((const uint8_t*)mh, path) ) {
        ImageLoader* image = ImageLoaderMachO::instantiateMainExecutable(mh, slide, path, gLinkContext);
        addImage(image);
        return (ImageLoaderMachO*)image;
    }
    
    throw "main executable not a known format";
}

在instantiateFromLoadedImage调用isCompatibleMachO函数检测march-o的hader,然后调用ImageLoaderMachO::instantiateMainExecutable函数,进入ImageLoaderMachO::instantiateMainExecutable

// create image for main executable
ImageLoader* ImageLoaderMachO::instantiateMainExecutable(const macho_header* mh, uintptr_t slide, const char* path, const LinkContext& context)
{
    //dyld::log("ImageLoader=%ld, ImageLoaderMachO=%ld, ImageLoaderMachOClassic=%ld, ImageLoaderMachOCompressed=%ld\n",
    //  sizeof(ImageLoader), sizeof(ImageLoaderMachO), sizeof(ImageLoaderMachOClassic), sizeof(ImageLoaderMachOCompressed));
    bool compressed;
    unsigned int segCount;
    unsigned int libCount;
    const linkedit_data_command* codeSigCmd;
    const encryption_info_command* encryptCmd;
    sniffLoadCommands(mh, path, false, &compressed, &segCount, &libCount, context, &codeSigCmd, &encryptCmd);
    // instantiate concrete class based on content of load commands
    if ( compressed ) 
        return ImageLoaderMachOCompressed::instantiateMainExecutable(mh, slide, path, segCount, libCount, context);
    else
#if SUPPORT_CLASSIC_MACHO
        return ImageLoaderMachOClassic::instantiateMainExecutable(mh, slide, path, segCount, libCount, context);
#else
        throw "missing LC_DYLD_INFO load command";
#endif
}

ImageLoaderMachO::instantiateMainExecutable函数中调用sniffLoadCommands为compressed(取值match-O中 dyld_info_only后者dyld_info),
segCount(match-O段的数量,最大不能大于255个),
libCount(match-O依赖库的个数,最大不能大于4095个),
codeSigCmd(代码签名),
encryptCmd(签名信息)
初始化。
ImageLoader是一个抽象类,ImageLoaderMachO::instantiateMainExecutable根据初始化后的值compressed分别调用不同的初始化方法进行初始化。
初始化完成后,返回到instantiateFromLoadedImage函数,调用addImage(image),将主程序添加sAllImages数组中。

static void addImage(ImageLoader* image)
{
    // add to master list
    allImagesLock();
        sAllImages.push_back(image);
    allImagesUnlock();
    
    // update mapped ranges
    uintptr_t lastSegStart = 0;
    uintptr_t lastSegEnd = 0;
    for(unsigned int i=0, e=image->segmentCount(); i < e; ++i) {
        if ( image->segUnaccessible(i) ) 
            continue;
        uintptr_t start = image->segActualLoadAddress(i);
        uintptr_t end = image->segActualEndAddress(i);
        if ( start == lastSegEnd ) {
            // two segments are contiguous, just record combined segments
            lastSegEnd = end;
        }
        else {
            // non-contiguous segments, record last (if any)
            if ( lastSegEnd != 0 )
                addMappedRange(image, lastSegStart, lastSegEnd);
            lastSegStart = start;
            lastSegEnd = end;
        }       
    }
    if ( lastSegEnd != 0 )
        addMappedRange(image, lastSegStart, lastSegEnd);

    
    if ( gLinkContext.verboseLoading || (sEnv.DYLD_PRINT_LIBRARIES_POST_LAUNCH && (sMainExecutable!=NULL) && sMainExecutable->isLinked()) ) {
        dyld::log("dyld: loaded: %s\n", image->getPath());
    }   
}

这里补充一下,我们经常在lldb调试中输入image list查看所有镜像模块,由于主程序是第一个添加到sAllImages中的,所以image list查看的模块第一个一定是主程序模块。


dyld简介及加载过程分析_第7张图片
222.png

主程序加载完毕后,_main中调用根据DYLD_INSERT_LIBRARIES个数循环调用loadInsertedDylib函数,加载插入的动态库(越狱的插件就是修改sEnv.DYLD_INSERT_LIBRARIES值,利用这个步骤在APP中注入插件,这个是苹果预留给自己用的,必须是root的权限的用户才能使用,所以越狱也是获取了root权限):

// load any inserted libraries
        if  ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
            for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib) 
                loadInsertedDylib(*lib);
        }
        // record count of inserted libraries so that a flat search will look at 
        // inserted libraries, then main, then others.
        sInsertedDylibCount = sAllImages.size()-1;

在loadInsertedDylib中调用load方法加载插入的动态库,并和主程序一样加入到sAllImages中。
动态库插入完成后,将插入的个数记录在sInsertedDylibCount中。

link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);

然后开始调用link链接主程序,进入link函数中:

void ImageLoader::link(const LinkContext& context, bool forceLazysBound, bool preflightOnly, bool neverUnload, const RPathChain& loaderRPaths, const char* imagePath)
{
    //dyld::log("ImageLoader::link(%s) refCount=%d, neverUnload=%d\n", imagePath, fDlopenReferenceCount, fNeverUnload);
    
    // clear error strings
    (*context.setErrorStrings)(0, NULL, NULL, NULL);

    uint64_t t0 = mach_absolute_time();
    this->recursiveLoadLibraries(context, preflightOnly, loaderRPaths, imagePath);
    //在链接的时候,不仅仅是对主程序进行链接,还有很多依赖库也需要进行链接,所以首先循环加载依赖库
    context.notifyBatch(dyld_image_state_dependents_mapped, preflightOnly);

    // we only do the loading step for preflights
    if ( preflightOnly )
        return;

    uint64_t t1 = mach_absolute_time();
    context.clearAllDepths();
    this->recursiveUpdateDepth(context.imageCount());//递归依赖层级

    __block uint64_t t2, t3, t4, t5;
    {
        dyld3::ScopedTimer(DBG_DYLD_TIMING_APPLY_FIXUPS, 0, 0, 0);
        t2 = mach_absolute_time();
        this->recursiveRebase(context); //必须对主程序和依赖库做重定位rebase(由于ASLR的存在)
        context.notifyBatch(dyld_image_state_rebased, false);

        t3 = mach_absolute_time();
        if ( !context.linkingMainExecutable ) //符号绑定
            this->recursiveBindWithAccounting(context, forceLazysBound, neverUnload);

        t4 = mach_absolute_time();
        if ( !context.linkingMainExecutable )
            this->weakBind(context); //弱绑定
        t5 = mach_absolute_time();
    }

    if ( !context.linkingMainExecutable )
        context.notifyBatch(dyld_image_state_bound, false);
    uint64_t t6 = mach_absolute_time(); 

    std::vector dofs;
    this->recursiveGetDOFSections(context, dofs); //注册GOF
    context.registerDOFs(dofs); //注册GOF
    uint64_t t7 = mach_absolute_time(); 

    // interpose any dynamically loaded images
    if ( !context.linkingMainExecutable && (fgInterposingTuples.size() != 0) ) {
        dyld3::ScopedTimer timer(DBG_DYLD_TIMING_APPLY_INTERPOSING, 0, 0, 0);
        this->recursiveApplyInterposing(context);
    }

    // clear error strings
    (*context.setErrorStrings)(0, NULL, NULL, NULL);

    fgTotalLoadLibrariesTime += t1 - t0;
    fgTotalRebaseTime += t3 - t2;
    fgTotalBindTime += t4 - t3;
    fgTotalWeakBindTime += t5 - t4;
    fgTotalDOF += t7 - t6;
    
    // done with initial dylib loads
    fgNextPIEDylibAddress = 0;
}

link函数主要做了循环加载依赖库,对主程序和依赖库做重定位rebase,符号绑定,弱绑定,注册GOF。

if ( sInsertedDylibCount > 0 ) {
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
                image->setNeverUnloadRecursive();
            }
            // only INSERTED libraries can interpose
            // register interposing info after all inserted libraries are bound so chaining works
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                image->registerInterposing(gLinkContext);
            }
        }

链接主程序完成后,判断sInsertedDylibCount插入的动态库数量是否大于0,然后循环调用link进行链接插入的动态库。
以上的所有步骤都是在加载Match-O,从initializeMainExecutable函数开始一步一步调用主程序代码。

    // run all initializers
        initializeMainExecutable();

结合之前的函数调用栈:


dyld简介及加载过程分析_第8张图片
E661C0F0590CC360C5AFA1B3CB5D56D6.png

我们知道在initializeMainExecutable中调用了ImageLoader::runInitializers函数,ImageLoader::runInitializers函数调用了ImageLoader::processInitializers,而ImageLoader::processInitializers函数中调用了ImageLoader::recursiveInitialization:函数,ImageLoader::recursiveInitialization:中又调用dyld::notifySingle:这些都可以在源码中找到。
当我们在dyld::notifySingle:中找load_images时,却找不到。

static void notifySingle(dyld_image_states state, const ImageLoader* image, ImageLoader::InitializerTimingList* timingInfo)
{
    //dyld::log("notifySingle(state=%d, image=%s)\n", state, image->getPath());
    std::vector* handlers = stateToHandlers(state, sSingleHandlers);
    if ( handlers != NULL ) {
        dyld_image_info info;
        info.imageLoadAddress   = image->machHeader();
        info.imageFilePath      = image->getRealPath();
        info.imageFileModDate   = image->lastModified();
        for (std::vector::iterator it = handlers->begin(); it != handlers->end(); ++it) {
            const char* result = (*it)(state, 1, &info);
            if ( (result != NULL) && (state == dyld_image_state_mapped) ) {
                //fprintf(stderr, "  image rejected by handler=%p\n", *it);
                // make copy of thrown string so that later catch clauses can free it
                const char* str = strdup(result);
                throw str;
            }
        }
    }
    if ( state == dyld_image_state_mapped ) {
        //  Save load addr + UUID for images from outside the shared cache
        if ( !image->inSharedCache() ) {
            dyld_uuid_info info;
            if ( image->getUUID(info.imageUUID) ) {
                info.imageLoadAddress = image->machHeader();
                addNonSharedCacheImageUUID(info);
            }
        }
    }
    if ( (state == dyld_image_state_dependents_initialized) && (sNotifyObjCInit != NULL) && image->notifyObjC() ) {
        uint64_t t0 = mach_absolute_time();
        dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
        (*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
        uint64_t t1 = mach_absolute_time();
        uint64_t t2 = mach_absolute_time();
        uint64_t timeInObjC = t1-t0;
        uint64_t emptyTime = (t2-t1)*100;
        if ( (timeInObjC > emptyTime) && (timingInfo != NULL) ) {
            timingInfo->addTime(image->getShortName(), timeInObjC);
        }
    }
    // mach message csdlc about dynamically unloaded images
    if ( image->addFuncNotified() && (state == dyld_image_state_terminated) ) {
        notifyKernel(*image, false);
        const struct mach_header* loadAddress[] = { image->machHeader() };
        const char* loadPath[] = { image->getPath() };
        notifyMonitoringDyld(true, 1, loadAddress, loadPath);
    }
}

仔细分析源码,发现了一个函数指针,(*sNotifyObjCInit)(image->getRealPath(), image->machHeader()); 我们猜测,有可能这个函数指针就是load_images函数。
为了验证结果,我们查找一下是哪个地方对sNotifyObjCInit这个函数指针赋值。

void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
{
    // record functions to call
    sNotifyObjCMapped   = mapped;
    sNotifyObjCInit     = init;
    sNotifyObjCUnmapped = unmapped;

    // call 'mapped' function with all images mapped so far
    try {
        notifyBatchPartial(dyld_image_state_bound, true, NULL, false, true);
    }
    catch (const char* msg) {
        // ignore request to abort during registration
    }

    //  call 'init' function on all images already init'ed (below libSystem)
    for (std::vector::iterator it=sAllImages.begin(); it != sAllImages.end(); it++) {
        ImageLoader* image = *it;
        if ( (image->getState() == dyld_image_state_initialized) && image->notifyObjC() ) {
            dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
            (*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
        }
    }
}

查找到是在registerObjCNotifiers函数为函数sNotifyObjCInit赋值的。
追本溯源,我们继续查找调用registerObjCNotifiers函数的源头,

void _dyld_objc_notify_register(_dyld_objc_notify_mapped    mapped,
                                _dyld_objc_notify_init      init,
                                _dyld_objc_notify_unmapped  unmapped)
{
    dyld::registerObjCNotifiers(mapped, init, unmapped);
}

发现是通过_dyld_objc_notify_register函数调用registerObjCNotifiers的,我们继续查找_dyld_objc_notify_register的调用者,但是在dyld源码中找不到。
这个时候,我们直接在Xcode中下一个_dyld_objc_notify_register函数的符号断点并运行:


dyld简介及加载过程分析_第9张图片
3F1F99D7C46B319D120E66DDEA5B1515.png

发现_dyld_objc_notify_register是由_objc_init函数调用的,这个时候我们只能查找objc源码了。
在objc源码中:

void _objc_init(void)
{
    static bool initialized = false;
    if (initialized) return;
    initialized = true;
    
    // fixme defer initialization until an objc-using image is found?
    environ_init();
    tls_init();
    static_init();
    lock_init();
    exception_init();

    _dyld_objc_notify_register(&map_images, load_images, unmap_image);
}

我们看到了_dyld_objc_notify_register被调用了,并且函数指针是load_images,所以我们的猜测是正确的。
进入load_images:

load_images(const char *path __unused, const struct mach_header *mh)
{
    // Return without taking locks if there are no +load methods here.
    if (!hasLoadMethods((const headerType *)mh)) return;

    recursive_mutex_locker_t lock(loadMethodLock);

    // Discover load methods
    {
        mutex_locker_t lock2(runtimeLock);
        prepare_load_methods((const headerType *)mh);
    }

    // Call +load methods (without runtimeLock - re-entrant)
    call_load_methods();
}

在load_images中调用了call_load_methods函数,继续进入call_load_methods函数,

**********************************************************************/
void call_load_methods(void)
{
    static bool loading = NO;
    bool more_categories;

    loadMethodLock.assertLocked();

    // Re-entrant calls do nothing; the outermost call will finish the job.
    if (loading) return;
    loading = YES;

    void *pool = objc_autoreleasePoolPush();

    do {
        // 1. Repeatedly call class +loads until there aren't any more
        while (loadable_classes_used > 0) {
            call_class_loads();
        }

        // 2. Call category +loads ONCE
        more_categories = call_category_loads();

        // 3. Run more +loads if there are classes OR more untried categories
    } while (loadable_classes_used > 0  ||  more_categories);

    objc_autoreleasePoolPop(pool);

    loading = NO;
}

终于在call_load_methods找到了循环调用我们程序中所有类的Load方法。

// let objc know we are about to initialize this image
            uint64_t t1 = mach_absolute_time();
            fState = dyld_image_state_dependents_initialized;
            oldState = fState;
            context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);
            
            // initialize this image
            bool hasInitializers = this->doInitialization(context);

ImageLoader::recursiveInitialization调用完dyld::notifySingle:后,会继续调用doInitialization函数,进入doInitialization函数

bool ImageLoaderMachO::doInitialization(const LinkContext& context)
{
    CRSetCrashLogMessage2(this->getPath());

    // mach-o has -init and static initializers
    doImageInit(context);
    doModInitFunctions(context);
    
    CRSetCrashLogMessage2(NULL);
    
    return (fHasDashInit || fHasInitializers);
}

doModInitFunctions作用是加载Match-O特有的函数(C++构造函数等)
下面我们来看一个实例:
当我们建立一个空工程,没有写任何代码,编译后的mach-o如下:


dyld简介及加载过程分析_第10张图片
3.png

当我们在main函数中加入如下代码:

#import 
#import "AppDelegate.h"

__attribute__((constructor)) void func1(){
    printf("func1来了");
}
__attribute__((constructor)) void func2(){
    printf("func2来了");
}

int main(int argc, char * argv[]) {
    @autoreleasepool {
        return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
    }
}

编译后的mach-o如下:


dyld简介及加载过程分析_第11张图片
D02BB1977C8C5BEB33C3A9D85E24E31D.png

在MatchO文件DATA段_la_symbol_ptr和_objc_classlist多了_mod_init_func组。doModInitFunctions加载的就是_mod_init_func中数据。

initializeMainExecutable(); 执行完后,dyld开始找主程序的入口函数(MatchO中的LC_MAIN段)

// find entry point for main executable
        result = (uintptr_t)sMainExecutable->getEntryFromLC_MAIN();

找到后,把结果返回到start中,由start进行调用。

你可能感兴趣的:(dyld简介及加载过程分析)