hbase0.96.1 hmaster启动过程分析

HBASE HMASTER启动分析

Hbase debug配置:

找到hbase这个shell脚本文件,在对应的位置,如我要debugmaster,

elif[ "$COMMAND" = "master" ] ; then

CLASS='org.apache.hadoop.hbase.master.HMaster'

if[ "$1" != "stop" ] && [ "$1" !="clear" ] ; then

HBASE_OPTS="-Xdebug-Xrunjdwp:transport=dt_socket,address=5555,server=y,suspend=y$HBASE_OPTS$HBASE_MASTER_OPTS"

fi

eclipse中,找到hbase-server这个项目,添加remotedebug配置,可参见hadooop源码分析中的配置






通过shell脚本,hbase-daemon.shstart master启动调用Hmastermain方法,


publicstaticvoidmain(String[] args) {

//打印版本信息,并记录到日志中.

VersionInfo.logVersion();

//生成一个HMasterCommandLine实例,并执行其doMain方法,传入参数

//HmasterCommandLine.doMain方法

newHMasterCommandLine(HMaster.class).doMain(args);

}


HmasterCommandLine.doMain方法


publicvoid doMain(Stringargs[]) {

try{

//1.生成Configuration实例,

//-此实例默认需要加载hadoopcore-default.xml/core-site.xml,

//-因此hbaseclasspath中应该包含hadoop-home的目录

hbase-env.sh配置示例

DOOP_HOME="/work/dist/hadoop-2.2.0-cdh5.0.0-beta-2"

JAVA_LIBRARY_PATH="$HADOOP_HOME/lib/native:$HADOOP_HOME/lib/native/Linux-amd64-64"

//2.加载hbase-default.xml/hbase-site.xml文件

//3.执行HmasterCommandLine.run方法

intret =ToolRunner.run(HBaseConfiguration.create(),this,args);

if(ret != 0){

System.exit(ret);

}

}catch(Exception e){

LOG.error("Failedto run", e);

System.exit(-1);

}

}


HmasterCommandLine.run方法


通过判断是否是start/stop来调用不同的方法进行启动,调用startMaster方法


HmasterCommandLine.startMaster方法


privateintstartMaster(){

Configuration conf= getConf();

try{

//If 'local', defer to LocalHBaseCluster instance. Starts master

//and regionserverboth in the one JVM.

//判断hbase.cluster.distributed是否为false,如果是,启用单机模式(zk/master/regionserver在一个jvm)

if(LocalHBaseCluster.isLocal(conf)){

finalMiniZooKeeperCluster zooKeeperCluster= newMiniZooKeeperCluster(conf);

File zkDataPath= newFile(conf.get(HConstants.ZOOKEEPER_DATA_DIR));

intzkClientPort= conf.getInt(HConstants.ZOOKEEPER_CLIENT_PORT,0);

if(zkClientPort== 0) {

thrownewIOException("Noconfig value for "

+HConstants.ZOOKEEPER_CLIENT_PORT);

}

zooKeeperCluster.setDefaultClientPort(zkClientPort);


//login the zookeeperserver principal (if using security)

ZKUtil.loginServer(conf,"hbase.zookeeper.server.keytab.file",

"hbase.zookeeper.server.kerberos.principal",null);


intclientPort= zooKeeperCluster.startup(zkDataPath);

if(clientPort!= zkClientPort){

........此处省去一些代码

thrownewIOException(errorMsg);

}

conf.set(HConstants.ZOOKEEPER_CLIENT_PORT,

Integer.toString(clientPort));

//Need to have the zkcluster shutdown when master is shutdown.

//Run a subclass that does the zkcluster shutdown on its way out.

LocalHBaseCluster cluster= newLocalHBaseCluster(conf,conf.getInt("hbase.masters",1),

conf.getInt("hbase.regionservers",1), LocalHMaster.class,HRegionServer.class);

((LocalHMaster)cluster.getMaster(0)).setZKCluster(zooKeeperCluster);

cluster.startup();

waitOnMasterThreads(cluster);

} else{

logProcessInfo(getConf());

//生成Hmaster的实例,调用HMaster(finalConfiguration conf)方法

HMaster master= HMaster.constructMaster(masterClass,conf);

if(master.isStopped()){

LOG.info("Won'tbring the Master up as a shutdown is requested");

return1;

}

//启动hmaster,请参见Hmaster.start方法

master.start();

master.join();

if(master.isAborted())

thrownewRuntimeException("HMasterAborted");

}

}catch(Throwable t){

LOG.error("Masterexiting", t);

return1;

}

return0;

}


Hmaster构造方法


publicHMaster(finalConfiguration conf)

throwsIOException, KeeperException, InterruptedException {

this.conf= newConfiguration(conf);

//Disable the block cache on the master

//因为这是master,不启用hfileblock-cache,hfile.block.cache.size设置为0

this.conf.setFloat(HConstants.HFILE_BLOCK_CACHE_SIZE_KEY,0.0f);

//检查通过hbasehdfs进行本地读取时,是否需要检验,dfs.client.read.shortcircuit.skip.checksum,默认为false

//通过hbase.regionserver.checksum.verify来配置regionserver读取到数据后是否检验

FSUtils.setupShortCircuitRead(conf);

//Server to handle client requests.

//通过dns得到当前主机的hostname

String hostname= Strings.domainNamePointerToHostName(DNS.getDefaultHost(

conf.get("hbase.master.dns.interface","default"),

conf.get("hbase.master.dns.nameserver","default")));


//得到masterrpc端口hbase.master.port,默认为60000

intport =conf.getInt(HConstants.MASTER_PORT,HConstants.DEFAULT_MASTER_PORT);

//Test that the hostnameis reachable

InetSocketAddress initialIsa= newInetSocketAddress(hostname,port);

if(initialIsa.getAddress()== null){

thrownewIllegalArgumentException("Failedresolve of hostname " +initialIsa);

}

//Verify that the bind address is reachable if set

//如果通过hbase.master.ipc.address指定有ip地址或主机名,通过指定的地址

String bindAddress= conf.get("hbase.master.ipc.address");

if(bindAddress!= null){

initialIsa= newInetSocketAddress(bindAddress,port);

if(initialIsa.getAddress()== null){

thrownewIllegalArgumentException("Failedresolve of bind address " +initialIsa);

}

}

String name= "master/"+ initialIsa.toString();

//Set how many times to retry talking to another server overHconnection.

//设置client连接的最大重试次次数,通过hbase.client.retries.number(默认为31)

      hbase.client.serverside.retries.multiplier(默认为10) 相乘得到(server-to-server)

HConnectionManager.setServerSideHConnectionRetries(this.conf,name, LOG);

//通过hbase.master.handler.count配置master的线程个数,

   默认为hbase.regionserver.handler.count25

intnumHandlers= conf.getInt("hbase.master.handler.count",

conf.getInt("hbase.regionserver.handler.count",25));

this.rpcServer= newRpcServer(this,name,getServices(),

initialIsa,// BindAddress is IP we got for thisserver.

numHandlers,

0, //we dontuse high priority handlers in master

conf,

0); //this is a DNC w/o high priority handlers

//Set our address.

this.isa= this.rpcServer.getListenerAddress();

//We don't want to pass isa's hostnamehere since it could be 0.0.0.0

this.serverName= ServerName.valueOf(hostname,this.isa.getPort(),System.currentTimeMillis());

this.rsFatals= newMemoryBoundedLogMessageBuffer(

conf.getLong("hbase.master.buffer.for.rs.fatals",1*1024*1024));


//login the zookeeperclient principal (if using security)

ZKUtil.loginClient(this.conf,"hbase.zookeeper.client.keytab.file",

"hbase.zookeeper.client.kerberos.principal",this.isa.getHostName());


//initialize server principal (if using secure Hadoop)

UserProvider provider= UserProvider.instantiate(conf);

provider.login("hbase.master.keytab.file",

"hbase.master.kerberos.principal",this.isa.getHostName());


........此处省去一些代码


//set the thread name now we have an address

setName(MASTER+ ":"+ this.serverName.toShortString());

//检查是否启用hbase.replication的跨集群同步,

// 请参见http://blog.csdn.net/teriy/article/details/7954203

Replication.decorateMasterConfiguration(this.conf);


//Hack! Maps DFSClient => Master for logs. HDFS made this

//configparamfor task trackers, but we can piggyback off of it.

if(this.conf.get("mapred.task.id")== null){

this.conf.set("mapred.task.id","hb_m_"+ this.serverName.toString());

}

//生成zk的监听,通过hbase.zookeeper.quorum进行配置,并初始化zk上的节点

this.zooKeeper= newZooKeeperWatcher(conf,MASTER+ ":"+ isa.getPort(),this,true);

this.rpcServer.startThreads();

this.pauseMonitor= newJvmPauseMonitor(conf);

this.pauseMonitor.start();


//metrics interval: using the same property as region server.

this.msgInterval= conf.getInt("hbase.regionserver.msginterval",3 * 1000);


//shouldwe check the compression codectype at master side, default true, HBASE-6370

this.masterCheckCompression= conf.getBoolean("hbase.master.check.compression",true);


this.metricsMaster= newMetricsMaster(newMetricsMasterWrapperImpl(this));


//Health checker thread.

//检查是否设置hbase.node.health.script.location,节点健康检查的脚本路径

//通过hbase.node.health.script.frequency设置检查间隔,默认为10000

//通过hbase.node.health.script.timeout来配置脚本执行的超时时间,默认为60000

//通过hbase.node.health.failure.threshold来配置脚本可执行的线程个数,默认为3

//如果设置有检查的脚本,生成HealthCheckChore线程实例

intsleepTime =this.conf.getInt(HConstants.HEALTH_CHORE_WAKE_FREQ,

HConstants.DEFAULT_THREAD_WAKE_FREQUENCY);

if(isHealthCheckerConfigured()){

healthCheckChore= newHealthCheckChore(sleepTime,this,getConfiguration());

}


//Do we publish the status?

//配置hbase.status.published是否启用hbase状态发布,默认为false

//通过hbase.status.publisher.class配置publisher的实现类,

默认为ClusterStatusPublisher.MulticastPublisher

booleanshouldPublish= conf.getBoolean(HConstants.STATUS_PUBLISHED,

HConstants.STATUS_PUBLISHED_DEFAULT);

ClassextendsClusterStatusPublisher.Publisher>publisherClass=

conf.getClass(ClusterStatusPublisher.STATUS_PUBLISHER_CLASS,

ClusterStatusPublisher.DEFAULT_STATUS_PUBLISHER_CLASS,

ClusterStatusPublisher.Publisher.class);


if(shouldPublish){

if(publisherClass== null){

LOG.warn(HConstants.STATUS_PUBLISHED+ " is true, but "+

ClusterStatusPublisher.DEFAULT_STATUS_PUBLISHER_CLASS+

"is not set - not publishing status");

} else{

clusterStatusPublisherChore= newClusterStatusPublisher(this,conf,publisherClass);

Threads.setDaemonThreadRunning(clusterStatusPublisherChore.getThread());

}

}

//读取hbase.master.distributed.log.replay分布式进行splitlog的设置,默认为false

//此设置为true,启用分布式日志重播,不需要对每一个region生成recovered.edits

//同时在replay时可以有其它写操作

distributedLogReplay= this.conf.getBoolean(HConstants.DISTRIBUTED_LOG_REPLAY_KEY,

HConstants.DEFAULT_DISTRIBUTED_LOG_REPLAY_CONFIG);

}


Hmaster.start方法


master.start方法直接启动master线程,调用hmaster.run方法

publicvoid run(){

MonitoredTaskstartupStatus=

TaskMonitor.get().createStatus("Masterstartup");

startupStatus.setDescription("Masterstartup");

masterStartTime= System.currentTimeMillis();

try{

//生成activemaster 跟踪,通过zookeeper.znode.master配置masterzk上的路径,默认为master

this.masterAddressManager= newMasterAddressTracker(getZooKeeperWatcher(),this);

this.masterAddressManager.start();


//Put up info server.

//生成webserver,default port is 60010

intport =this.conf.getInt("hbase.master.info.port",60010);

if(port >=0) {

String a= this.conf.get("hbase.master.info.bindAddress","0.0.0.0");

this.infoServer= newInfoServer(MASTER,a, port,false,this.conf);

this.infoServer.addServlet("status","/master-status",MasterStatusServlet.class);

this.infoServer.addServlet("dump","/dump",MasterDumpServlet.class);

this.infoServer.setAttribute(MASTER,this);

this.infoServer.start();

}


this.registeredZKListenersBeforeRecovery= this.zooKeeper.getListeners();


//1.生成ActiveMasterManager实例

//2.检查hbase.master.backup,看看当前master是否是backupmaster,如果不是(activeMaster)不做操作,

如果是,根据zk配置的zookeeper.session.timeout超时时间,默认为180000ms不停去检查是否有active

     如果没有active,此处一直等着activeMaster启动(stallIfBackupMaster方法)

3.1生成ClusterStatusTracker实例,并启动此线程实例,迭代判断

   zookeeper.znode.state配置的zk路径是否存在(也表示cluster是否启动),默认路径为running

3.2blockUntilBecomingActiveMaster方法,此方法最先进入的masteractiveMaster

原因是因为activeMaster没有注册成功前,backupMaster需要一直在stallIfBackupMaster方法等着

  如果master不是backup(activeMaster),把当前的master写入到zkmaster路径下,注册此master,

路径通过zookeeper.znode.master进行配置,默认值为master

3.3.如果当前masteractivemaster(zk创建master路径成功),需要删除backup下此master的路径

通过zookeeper.znode.backup.masters配置backup-master地址,默认=backup-masters

3.4.此时在stallIfBackupMaster方法中等着的所有backup-master会进入blockUntilBecomingActiveMaster方法

4.如果进入的masterbackupmaster,在配置的backup-master中注册自己的地址,

注册地址为(/hbase/backup-masters/ip,port,longcode)

  通过zookeeper.znode.backup.masters进行配置,默认值为backup-masters

5.以上部分如果是backup-master会一直等着,

直到currentactive master shutdown,ActiveMasterManager.nodeDeleted调用

唤醒所有等着的线程,重新去生成currentactive master .

becomeActiveMaster(startupStatus);


//We are either the active master or we were asked to shutdown

if(!this.stopped){

调用finishInitialization方法,此过程是启动比较重要的过程

//如果当前masteractivemaster,设置此节点为activeMaster(isActiveMaster=true)

//2.生成masterFileSystem,得到hbaserootdir/tmpdir/,是否分布式日志重播,SplitLogManager

并生成启动此clusterid,

2.1根据rootdir,生成hbaseFSTableDescriptors,实例(可以理解为是表的根路径)

2.2zk中注册此clusterid,通过zookeeper.znode.clusterId进行配置,默认值为hbaseid

2.3生成hmaster中的执行线程ExecutorService,生成ServerManagerregionserver管理程序

3.初始化zk的跟踪器(调用initializeZKBasedSystemTrackers),

请参见Hmaster.initializeZKBasedSystemTrackers方法

4.1生成MasterCoprocessorHost的实例,主要用来控制对表更改/region状态更新的处理

4.2调用startServiceThreads启动相应的线程,请参见Hmaster.startServiceThreads方法

4.3调用this.serverManager.waitForRegionServers(status);,等待regionserver的启动

请参见ServerManager.waitForRegionServers方法,,此时主线程等待

4.4判断regionServerTracker中的onlineserver是否在的serverManageronlineserver

  如果不在,添加进去

4.5判断metaregion是否需要进行logreplay

  (WALs目录下的log:xx-splitting文件的server不在onlineserver,

同时原来的metalocation在非onlineserver)

4.6日志的split,如果启用了分布式logreplay,把log加入到

 zookeeper.znode.recovering.regions配置的zk路径下,默认值recovering-regions,不进行split

否则加入到zookeeper.znode.splitlog,路径下,默认值splitWAL,时行split

4.7分配metaregion,处理下线的rs,执行balancer

finishInitialization(startupStatus,false);

.......此处省去一些代码

}

}catch(Throwable t){

//HBASE-5680: Likely hadoop23 vshadoop20.x/1.x incompatibility

........此处省去一些代码

}finally{

........此处省去一些代码,表示hmaster被停止.

LOG.info("HMastermain thread exiting");

}



Hmaster.initializeZKBasedSystemTrackers方法


voidinitializeZKBasedSystemTrackers()throws IOException,

InterruptedException,KeeperException {

//此部分用来生成meta表的路径跟踪程序,MetaRegionTracker,等待region-server注册metaregion.

//通过zookeeper.znode.metaserver来配置zkmeta表的路径,默认为meta-region-server

this.catalogTracker= createCatalogTracker(this.zooKeeper,this.conf,this);

this.catalogTracker.start();

//得到loadbalancer的实现程序,并生成loadbalancer实例,

  通过hbase.master.loadbalancer.class进行配置,

默认的实现类为StochasticLoadBalancer(可参见其doc说明)

this.balancer= LoadBalancerFactory.getLoadBalancer(conf);

//生成针对LoadBalancer的路径跟踪程序,loadbalancer通过balancer开启时注册到zk,

通过zookeeper.znode.balancer进行配置,默认值为balancer

this.loadBalancerTracker= newLoadBalancerTracker(zooKeeper,this);

this.loadBalancerTracker.start();

//生成针对regionassign的路径跟踪程序,用来管理region的分配

1.通过hbase.assignment.timeout.management配置是否启用assigntime out,默认为false

2.通过hbase.master.assignment.timeoutmonitor.period配置assign的超时检查间隔,默认为30000ms.

3.通过hbase.master.assignment.timeoutmonitor.timeout配置assign的超时时间,默认为600000ms

4.通过hbase.master.assignment.timerupdater.period配置assign的时间更新间隔,默认为10000

5.通过hbase.assignment.maximum.attempts配置assign的最大执行尝试次数,需要是>=1的值,默认为10

6.通过hbase.meta.assignment.retry.sleeptime来配置metaassign重试的间隔时间,默认为1000ms

7.通过hbase.assignment.threads.max来配置regionassign的执行线程个数,默认为30

8.通过hbase.bulk.assignment.waittillallassigned配置bulk(批量的regionassign)

是否等待所有的assign完成后才能进行.默认为false

9.通过hbase.bulk.assignment.threshold.regions配置bulk执行的分配region个数,

10.通过hbase.bulk.assignment.threshold.servers配置bulk执行的分配regionserver个数

regionassign bulk说明:当需要分配的region个数>=9中配置的region个数,

    同时要分配的regionserver个数也>=10中配置的server个数时,表示是在进行批量的分配,

此时单个的分配性能就会比较差,因此此时就需要要使用批量的regionassign

11.通过hbase.assignment.zkevent.workers配置assign中触发zk事件的线程个数,默认为20

this.assignmentManager= newAssignmentManager(this,serverManager,

this.catalogTracker,this.balancer,this.executorService,this.metricsMaster,

this.tableLockManager);

zooKeeper.registerListenerFirst(assignmentManager);

管理regionserver的注册与下线,此实例中维护着当前存活着的regionserver

zk中的注册路径通过zookeeper.znode.rs进行配置,默认值rs,通过zk的处理程序与ServerManager接合管理rs

rs下线时(rs的路径在zk上被删除),会触发ServerManagerexpireServer,

并触发ServerShutdownHandler.process,在此处会去scan meta,

得到当前servermeta中记录的所有region

调用assignmentManager重新进行assign

this.regionServerTracker= newRegionServerTracker(zooKeeper,this,

this.serverManager);

this.regionServerTracker.start();

Drain跟踪处理程序,如果一个regionserver不能够再分配region,那么此rs会被添加到

  通过zookeeper.znode.draining.rs配置的路径下默认为draining,

drainingServerTracker会记录住此rs,通过ServerManager进行处理

this.drainingServerTracker= newDrainingServerTracker(zooKeeper,this,

this.serverManager);

this.drainingServerTracker.start();


//Set the cluster as up. If new RSs, they'll be waiting on this before

//going ahead with their startup.

booleanwasUp =this.clusterStatusTracker.isClusterUp();

if(!wasUp)this.clusterStatusTracker.setClusterUp();

........此处省去一些代码

//create the snapshot manager

this.snapshotManager= newSnapshotManager(this,this.metricsMaster);

}




Hmaster.startServiceThreads方法


voidstartServiceThreads() throwsIOException{

//Start the executor service pools

//启动相应的线程

this.executorService.startExecutorService(ExecutorType.MASTER_OPEN_REGION,

conf.getInt("hbase.master.executor.openregion.threads",5));

this.executorService.startExecutorService(ExecutorType.MASTER_CLOSE_REGION,

conf.getInt("hbase.master.executor.closeregion.threads",5));

this.executorService.startExecutorService(ExecutorType.MASTER_SERVER_OPERATIONS,

conf.getInt("hbase.master.executor.serverops.threads",5));

this.executorService.startExecutorService(ExecutorType.MASTER_META_SERVER_OPERATIONS,

conf.getInt("hbase.master.executor.serverops.threads",5));

this.executorService.startExecutorService(ExecutorType.M_LOG_REPLAY_OPS,

conf.getInt("hbase.master.executor.logreplayops.threads",10));


//We depend on there being only one instance of this executor running

//at a time. To do concurrency, would need fencing of enable/disableof

//tables.

//处理对表的相关操作的线程,包括创建/修改/合并region

this.executorService.startExecutorService(ExecutorType.MASTER_TABLE_OPERATIONS,1);


//设置清理线程的执行间隔

String n= Thread.currentThread().getName();

intcleanerInterval= conf.getInt("hbase.master.cleaner.interval",60 * 1000);

//hbase.oldlog目录下的内容进行清理

1.通过hbase.master.logcleaner.ttl配置.oldlog目录下文件的ttl过期时间,默认值为60000010分钟

2.通过hbase.master.logcleaner.plugins配置选择要删除的文件的过滤器,默认是TimeToLiveLogCleaner,

  多个用“,”号分开

this.logCleaner=

newLogCleaner(cleanerInterval,

this,conf,getMasterFileSystem().getFileSystem(),

getMasterFileSystem().getOldLogDir());

Threads.setDaemonThreadRunning(logCleaner.getThread(),n +".oldLogCleaner");


//startthe hfilearchive cleaner thread

//hbasearchive的内容进行清理

1.通过hbase.master.hfilecleaner.plugins配置hfile文件的要删除文件过滤器,默认是TimeToLiveHFileCleaner

2.通过hbase.master.hfilecleaner.ttl配置hfile的过期ttl时间,默认值为60000*5=5分钟

Path archiveDir= HFileArchiveUtil.getArchivePath(conf);

this.hfileCleaner= newHFileCleaner(cleanerInterval,this,conf,getMasterFileSystem()

.getFileSystem(),archiveDir);

Threads.setDaemonThreadRunning(hfileCleaner.getThread(),n +".archivedHFileCleaner");


//Start the health checker

启动节点健康状态检查的线程.(Hmster构造方法中的HealthCheckChore实例)

if(this.healthCheckChore!= null){

Threads.setDaemonThreadRunning(this.healthCheckChore.getThread(),n +".healthChecker");

}


//Start allowing requests to happen.

this.rpcServer.openServer();

this.rpcServerOpen= true;

if(LOG.isTraceEnabled()){

LOG.trace("Startedservice threads");

}

}



ServerManager.waitForRegionServers方法

1.通过hbase.master.wait.on.regionservers.interval配置regionserver启动的等待时间,默认是1500ms

2.通过hbase.master.wait.on.regionservers.timeout配置regionserver的等待超时,默认是4500ms

3.通过hbase.master.wait.on.regionservers.mintostart配置需要等待的最小多少个regionserver启动起来,

默认1,不能小过1

4.通过hbase.master.wait.on.regionservers.maxtostart配置最大等待多少个regionserver启动起来,

默认值integer.maxvalue

5.maxtostart不能小过mintostart


publicvoidwaitForRegionServers(MonitoredTaskstatus)

throwsInterruptedException {

finallonginterval =this.master.getConfiguration().

getLong(WAIT_ON_REGIONSERVERS_INTERVAL,1500);

finallongtimeout =this.master.getConfiguration().

getLong(WAIT_ON_REGIONSERVERS_TIMEOUT,4500);

intminToStart= this.master.getConfiguration().

getInt(WAIT_ON_REGIONSERVERS_MINTOSTART,1);

if(minToStart< 1) {

........此处省去一些代码

minToStart= 1;

}

intmaxToStart= this.master.getConfiguration().

getInt(WAIT_ON_REGIONSERVERS_MAXTOSTART,Integer.MAX_VALUE);

if(maxToStart< minToStart){

........此处省去一些代码

maxToStart= Integer.MAX_VALUE;

}


longnow = System.currentTimeMillis();

finallongstartTime =now;

longslept = 0;

longlastLogTime= 0;

longlastCountChange= startTime;

intcount =countOfRegionServers();

intoldCount =0;

//迭代条件,master没有被停止,同时启动的rs个数小过maxTostart

同时最后一次启动rs的时间已经超过了interval(1500ms)

 或者进入此方法的时间小过timeout(4500ms)的时间值

或者最小rs启动的个数小过mintostart的个数,

也就是要保证等待时间最小是4.5s,同时有minTostartrs已经启动,此迭代停止

while(

!this.master.isStopped()&&

count< maxToStart&&

(lastCountChange+interval> now ||timeout >slept ||count <minToStart)

){


//Log some info at every interval time or if there is a change

if(oldCount!= count ||lastLogTime+interval< now){

lastLogTime= now;

........此处省去一些代码

status.setStatus(msg);

}


//We sleep for some time

finallongsleepTime =50;

Thread.sleep(sleepTime);

now= System.currentTimeMillis();

slept= now -startTime;


oldCount= count;

count= countOfRegionServers();

if(count !=oldCount) {

lastCountChange= now;

}

}

........此处省去一些代码

}



region assign,split等过程待分析

你可能感兴趣的:(HADOOP,大数据,HBASE)