A voltage applied to the metallic plate modalated the conductance of the underlying semiconductor, which in turn modulated the carrent flowing between ohmic contacts A and B. This phenomenon, where the conductivity of a semiconductor is modulated by an electric field applied normal to the surface of the semiconductor, has been named the field effect.
Suppose we connect S to ground, reverse bias at S is V G V_G VG.
V p V_p Vp = Reverse bias between n-channel and p + p^+ p+ gate at the drain end ( x = 0 ) (x=0) (x=0).
h ( x ) h(x) h(x) = Channel half-width at any x x x
a a a = half width of channel
Assumptions:
V p = q a 2 N D 2 ε V_p=\frac{qa^2N_D}{2\varepsilon} Vp=2εqa2ND
a a a: half thickness
L L L: length
Z Z Z: depth
2 a 2a 2a: thickness
I D = G o V P [ V D V P + 2 3 ( − V G V P ) 3 / 2 − 2 3 ( V D − V G V P ) 3 / 2 ] I_D=G_oV_P\left[\frac{V_D}{V_P} + \frac23\left(-\frac{V_G}{V_P}\right)^{3/2} - \frac23\left(\frac{V_D-V_G}{V_P}\right)^{3/2}\right] ID=GoVP[VPVD+32(−VPVG)3/2−32(VPVD−VG)3/2]
G o = 2 a Z ρ L G_o=\frac{2aZ}{\rho L} Go=ρL2aZ
I D ( s a t ) = G o V P [ V D V P + 2 3 ( − V G V P ) 3 / 2 − 2 3 ] I_D(sat)=G_oV_P\left[\frac{V_D}{V_P} + \frac23\left(-\frac{V_G}{V_P}\right)^{3/2} - \frac23\right] ID(sat)=GoVP[VPVD+32(−VPVG)3/2−32]
g m ( s a t ) = ∂ I D ( s a t ) ∂ V G = G o [ 1 − ( − V G V P ) 1 / 2 ] g_m(sat)=\frac{\partial I_D(sat)}{\partial V_G}=G_o\left[1-\left(-\frac{V_G}{V_P}\right)^{1/2}\right] gm(sat)=∂VG∂ID(sat)=Go[1−(−VPVG)1/2]
Φ S = χ + ( E c − E F ) F B \Phi_S=\chi+(E_c-E_F)_{FB} ΦS=χ+(Ec−EF)FB
Φ B = Φ M − χ \Phi_B=\Phi_M-\chi ΦB=ΦM−χ
When the barrier is thin enough, the carriers can tunnel through.
Upper: forward bias. Below: rev bias
Additional component of current
V b i = 1 q [ Φ B − ( E c − E F ) F B ] V_{bi}=\frac1q\left[\Phi_B-(E_c-E_F)_{FB}\right] Vbi=q1[ΦB−(Ec−EF)FB]
E ( x ) = − q N D ε S i ( W − x ) … 0 ≤ x ≤ W E(x)=-\frac{qN_D}{\varepsilon_{Si}}(W-x)\ldots 0\le x\le W E(x)=−εSiqND(W−x)…0≤x≤W
V ( x ) = − q N D 2 ε S i ( W − x ) 2 … 0 ≤ x ≤ W V(x)=-\frac{qN_D}{2\varepsilon_{Si}}(W-x)^2\ldots 0\le x \le W V(x)=−2εSiqND(W−x)2…0≤x≤W
W = 2 ε S i q N D ( V b i − V A ) W=\sqrt{\frac{2\varepsilon_{Si}}{qN_D}(V_{bi}-V_A)} W=qND2εSi(Vbi−VA)
Φ ( x ) = q N D x 2 2 ϵ S \Phi(x)=\frac{qN_Dx^2}{2\epsilon_S} Φ(x)=2ϵSqNDx2
J = J S ( e q V a / k T − 1 ) J=J_S(e^{qV_a/kT}-1) J=JS(eqVa/kT−1)
J S = A ∗ T 2 exp ( − q Φ B k T ) J_S=A^*T^2\exp\left(-\frac{q\Phi_B}{kT}\right) JS=A∗T2exp(−kTqΦB)
A ∗ A^* A∗ is the Effective Richardson Constant
Φ S = 1 q [ E i ( b u l k ) − E i ( s u r f a c e ) ] \Phi_S=\frac1q[E_i(bulk)-E_i(surface)] ΦS=q1[Ei(bulk)−Ei(surface)]
Φ F = 1 q [ E i ( b u l k ) − E F ] \Phi_F=\frac1q[E_i(bulk)-E_F] ΦF=q1[Ei(bulk)−EF]
In p-type, N A ≫ N D N_A\gg N_D NA≫ND, p b u l k = n i exp ( [ E i ( b u l k ) − E F ] / k T ) = N A p_{bulk}=n_i\exp([E_i(bulk)-E_F]/kT)= N_A pbulk=niexp([Ei(bulk)−EF]/kT)=NA
Φ F = k T q ln ( N A n i ) \Phi_F=\frac{kT}{q}\ln\left(\frac{N_A}{n_i}\right) ΦF=qkTln(niNA)
In n-type, N D ≫ N A N_D\gg N_A ND≫NA, n b u l k = n i exp ( [ E F − E i ( b u l k ) ] ) = N D n_{bulk}=n_i\exp([E_F-E_i(bulk)])=N_D nbulk=niexp([EF−Ei(bulk)])=ND
Φ F = − k T q ln ( N D n i ) \Phi_F=-\frac{kT}{q}\ln\left(\frac{N_D}{n_i}\right) ΦF=−qkTln(niND)
When V G = V T V_G=V_T VG=VT,
Φ S = 2 Φ F \Phi_S=2\Phi_F ΦS=2ΦF
Valid before strong inversion:
W = 2 ε S i q N A Φ S W=\sqrt{\frac{2\varepsilon_{Si}}{qN_A}\Phi_S} W=qNA2εSiΦS
At strong inversion:W m = 2 ϵ k T q 2 N A ln ( N A n i ) W_m=2\sqrt{\frac{\epsilon kT}{q^2N_A}\ln\left(\frac{N_A}{n_i}\right)} Wm=2q2NAϵkTln(niNA)
When V G = V T V_G=V_T VG=VT, Φ S = 2 Φ F \Phi_S=2\Phi_F ΦS=2ΦF, the depletion width
W T = 4 ε S i q N A Φ F W_T=\sqrt{\frac{4\varepsilon_{Si}}{qN_A}\Phi_F} WT=qNA4εSiΦF
For N(-channel)MOS (P-bulk)
V T = 2 Φ F + ϵ O X I D E x O ϵ S i 4 q N A ϵ S i Φ F V_T=2\Phi_F+\frac{\epsilon_{OXIDE}x_O}{\epsilon_{Si}}\sqrt{\frac{4qN_A}{\epsilon_{Si}}\Phi_F} VT=2ΦF+ϵSiϵOXIDExOϵSi4qNAΦF
For PMOS (N-bulk)
V T = 2 Φ F − ϵ O X I D E x O ϵ S i 4 q N D ϵ S i ( − Φ F ) V_T=2\Phi_F-\frac{\epsilon_{OXIDE}x_O}{\epsilon_{Si}}\sqrt{\frac{4qN_D}{\epsilon_{Si}}(-\Phi_F)} VT=2ΦF−ϵSiϵOXIDExOϵSi4qND(−ΦF)
x O x_O xO is the thickness of the OXIDE
Widening everywhere as V S D V_{SD} VSD grows
If current is 0, the pinch-off will disappear. To maintain pinch-off, a non-zero current must be present.
Formula for depetion layer width remainis same at every point and edge of depletion layer is not a multi-valued function at any point
g m = ∂ I D ( s a t ) ∂ V G g_m=\frac{\partial I_D(sat)}{\partial V_G} gm=∂VG∂ID(sat)
Proportional to V G \sqrt{V_G} VG
e at every point and edge of depletion layer is not a multi-valued function at any point
g m = ∂ I D ( s a t ) ∂ V G g_m=\frac{\partial I_D(sat)}{\partial V_G} gm=∂VG∂ID(sat)
Proportional to V G \sqrt{V_G} VG