FET

文章目录

  • How FET got its Name
  • JFET (Junction FET)
    • I-V Characteristics
      • Questions
    • Pinch-off voltage
    • Channel Current
    • Gain (Transconductance)
  • MESFET (Metal Semiconductor FET)
    • Metal-Semiconductor (MS) Contact
    • Schottky Diode
    • Heavily Doped (Degenerately Doped) Semiconductor
    • Schottky Diode Calculations
  • MOSFET (Metal-Oxide FET)
    • Composition
    • Terminal Naming
    • Functionality (NMOS)
    • MOS Energy Band Diagram
    • MOS Calculations
      • Φ S \Phi_S ΦS: Surface Potential
      • Φ F \Phi_F ΦF
      • Depletion Width W W W
      • Threshold Voltage V T V_T VT
      • Cap-Voltage Characteristics
    • Supplement
    • JFET pinch-off
      • Why doesn't current goto 0
      • How does current flow after pinch-off
    • Gradual Channel Approx
    • JFET Transconductance
    • JFET Transconductance

  • How FET got its Name
  • JFET (Junction FET)
    • I-V Characteristics
      • Questions
    • Pinch-off voltage
    • Channel Current
    • Gain (Transconductance)
  • MESFET (Metal Semiconductor FET)
    • Metal-Semiconductor (MS) Contact
    • Schottky Diode
    • Heavily Doped (Degenerately Doped) Semiconductor
    • Schottky Diode Calculations
  • MOSFET (Metal-Oxide FET)
    • Composition
    • Terminal Naming
    • Functionality (NMOS)
    • MOS Energy Band Diagram
    • MOS Calculations
      • KaTeX parse error: Undefined control sequence: \PhiS at position 1: \̲P̲h̲i̲S̲: Surface Potential
      • KaTeX parse error: Undefined control sequence: \PhiF at position 1: \̲P̲h̲i̲F̲
      • Depletion Width W W W
      • Threshold Voltage V T VT VT
      • Cap-Voltage Characteristics
    • Supplement
    • JFET pinch-off
      • Why doesn’t current goto 0
      • How does current flow after pinch-off
    • Gradual Channel Approx
    • JFET Transconductance

How FET got its Name

A voltage applied to the metallic plate modalated the conductance of the underlying semiconductor, which in turn modulated the carrent flowing between ohmic contacts A and B. This phenomenon, where the conductivity of a semiconductor is modulated by an electric field applied normal to the surface of the semiconductor, has been named the field effect.

JFET (Junction FET)

FET_第1张图片
Suppose we connect S to ground, reverse bias at S is V G V_G VG.

I-V Characteristics

  1. V G V_G VG = 0. When VD is small, ID is small. Linear I-V. No change in depletion width across channel.

    FET_第2张图片
  2. V G V_G VG increases. Channel pinches-off.
    FET_第3张图片
    FET_第4张图片
    FET_第5张图片

Questions

  1. Should/Should not I D I_D ID = 0 beyond pinch-off?
    No. Carriers can also pass depletion region, but see a much higher resisitance.
  2. Why does V D V_D VD > V D S a t V_D^{Sat} VDSat have no effect on ID?
    Increasing V D V_D VD will also increase the length of pinched-off region. These two effects cancel out.

Pinch-off voltage

V p V_p Vp = Reverse bias between n-channel and p + p^+ p+ gate at the drain end ( x = 0 ) (x=0) (x=0).
h ( x ) h(x) h(x) = Channel half-width at any x x x
a a a = half width of channel
Assumptions:

  1. Channel with at x = 0 x=0 x=0 decreases uniformly as the reverse bias increases to pinch-off.
  2. V b i V_{bi} Vbi neglected.
  3. p + − n p^+-n p+n gate junction.

V p = q a 2 N D 2 ε V_p=\frac{qa^2N_D}{2\varepsilon} Vp=2εqa2ND
a a a: half thickness

Channel Current

L L L: length
Z Z Z: depth
2 a 2a 2a: thickness

I D = G o V P [ V D V P + 2 3 ( − V G V P ) 3 / 2 − 2 3 ( V D − V G V P ) 3 / 2 ] I_D=G_oV_P\left[\frac{V_D}{V_P} + \frac23\left(-\frac{V_G}{V_P}\right)^{3/2} - \frac23\left(\frac{V_D-V_G}{V_P}\right)^{3/2}\right] ID=GoVP[VPVD+32(VPVG)3/232(VPVDVG)3/2]
G o = 2 a Z ρ L G_o=\frac{2aZ}{\rho L} Go=ρL2aZ
I D ( s a t ) = G o V P [ V D V P + 2 3 ( − V G V P ) 3 / 2 − 2 3 ] I_D(sat)=G_oV_P\left[\frac{V_D}{V_P} + \frac23\left(-\frac{V_G}{V_P}\right)^{3/2} - \frac23\right] ID(sat)=GoVP[VPVD+32(VPVG)3/232]

Gain (Transconductance)

g m ( s a t ) = ∂ I D ( s a t ) ∂ V G = G o [ 1 − ( − V G V P ) 1 / 2 ] g_m(sat)=\frac{\partial I_D(sat)}{\partial V_G}=G_o\left[1-\left(-\frac{V_G}{V_P}\right)^{1/2}\right] gm(sat)=VGID(sat)=Go[1(VPVG)1/2]

MESFET (Metal Semiconductor FET)

FET_第6张图片

Metal-Semiconductor (MS) Contact

FET_第7张图片

Energy Band Diagram of Metal and Semiconductor
  • Φ M \Phi_M ΦM: Metal Work Function (the one in photoelectric effect)
  • Φ S \Phi_S ΦS: Semiconductor Work Function
  • χ \chi χ: Electron Affinity. χ = ( E 0 − E C ) ∣ s u r f a c e \chi=(E_0-E_C)|_{surface} χ=(E0EC)surface

Φ S = χ + ( E c − E F ) F B \Phi_S=\chi+(E_c-E_F)_{FB} ΦS=χ+(EcEF)FB

  • ( E c − E F ) F B (E_c-E_F)_{FB} (EcEF)FB: Energy difference between E c E_c Ec and E F E_F EF at flat band (i.e.) zero bias condition.

FET_第8张图片

Φ B = Φ M − χ \Phi_B=\Phi_M-\chi ΦB=ΦMχ

  • Φ B \Phi_B ΦB: surface potential-energy barrier encountered by electrons with E = E F E=E_F E=EF in the metal.

Schottky Diode

  • Φ M > Φ S \Phi_M>\Phi_S ΦM>ΦS: Applying V A > 0 V_A>0 VA>0 lowers E F M E_{FM} EFM below E F S E_{FS} EFS, reduces the barrier seen by electrons in the semiconductor.

FET_第9张图片

  • Φ M < Φ S \Phi_M<\Phi_S ΦM<ΦS: Non-rectifying, Ohmic.

FET_第10张图片

Heavily Doped (Degenerately Doped) Semiconductor

FET_第11张图片
When the barrier is thin enough, the carriers can tunnel through.
Upper: forward bias. Below: rev bias
Additional component of current

Schottky Diode Calculations

  • Built-in Voltage

V b i = 1 q [ Φ B − ( E c − E F ) F B ] V_{bi}=\frac1q\left[\Phi_B-(E_c-E_F)_{FB}\right] Vbi=q1[ΦB(EcEF)FB]

  • ρ \rho ρ
    • Metal: delta function (charge only on surface)
    • Semiconductor: ρ = q N D \rho=qN_D ρ=qND
  • E E E:

E ( x ) = − q N D ε S i ( W − x ) … 0 ≤ x ≤ W E(x)=-\frac{qN_D}{\varepsilon_{Si}}(W-x)\ldots 0\le x\le W E(x)=εSiqND(Wx)0xW

  • V V V:

V ( x ) = − q N D 2 ε S i ( W − x ) 2 … 0 ≤ x ≤ W V(x)=-\frac{qN_D}{2\varepsilon_{Si}}(W-x)^2\ldots 0\le x \le W V(x)=2εSiqND(Wx)20xW

  • Depletion Width

W = 2 ε S i q N D ( V b i − V A ) W=\sqrt{\frac{2\varepsilon_{Si}}{qN_D}(V_{bi}-V_A)} W=qND2εSi(VbiVA)

  • Φ ( x ) \Phi(x) Φ(x)

Φ ( x ) = q N D x 2 2 ϵ S \Phi(x)=\frac{qN_Dx^2}{2\epsilon_S} Φ(x)=2ϵSqNDx2

  • Current Density

J = J S ( e q V a / k T − 1 ) J=J_S(e^{qV_a/kT}-1) J=JS(eqVa/kT1)
J S = A ∗ T 2 exp ⁡ ( − q Φ B k T ) J_S=A^*T^2\exp\left(-\frac{q\Phi_B}{kT}\right) JS=AT2exp(kTqΦB)
A ∗ A^* A is the Effective Richardson Constant

MOSFET (Metal-Oxide FET)

Composition

  • MOS Capacitor
  • Two pn juncitons

Terminal Naming

  • Carriers enter the structure through Source (S)
  • Leave through the Drain (D)
  • Subject to the control of the Gate (G)

Functionality (NMOS)

  • When V G ≤ V T V_G\le V_T VGVT, i.e. V G V_G VG is in accumulation or depletion biased, the gated region contains mostly holes and few electrons, an open circuit is formed.
  • When V G > V T V_G>V_T VG>VT, i.e. V G V_G VG is inversion biased, an inversion layer (channel) containing mobile electrons is formed.
  • As V D V_D VD increases, the channel finally pinches-off, the current saturates.

FET_第12张图片

MOSFET Pinches-off

FET_第13张图片

Channel Length Modulation of Short-Channel Device

MOS Energy Band Diagram

FET_第14张图片

Band Diagram for NMOS
  • Accumulation ( V G < 0 V_G<0 VG<0) holes accumulate on the semiconductor side of the gate
  • Depletion ( 0 < V G < V T 00<VG<VT) holes repelled away, leaving Ionized acceptors atoms
  • Inversion ( V G > V T V_G>V_T VG>VT) electron density increase
    • Initially, n < n i nn<ni.
    • n = n i n=n_i n=ni when E i = E F E_i=E_F Ei=EF
  • When V G = V T V_G=V_T VG=VT, n = N A n=N_A n=NA, the semiconductor seems no longer to be depleted. Instead, it now behave similar to n-type. The channel has formed.

MOS Calculations

Φ S \Phi_S ΦS: Surface Potential

Φ S = 1 q [ E i ( b u l k ) − E i ( s u r f a c e ) ] \Phi_S=\frac1q[E_i(bulk)-E_i(surface)] ΦS=q1[Ei(bulk)Ei(surface)]

Φ F \Phi_F ΦF

Φ F = 1 q [ E i ( b u l k ) − E F ] \Phi_F=\frac1q[E_i(bulk)-E_F] ΦF=q1[Ei(bulk)EF]
In p-type, N A ≫ N D N_A\gg N_D NAND, p b u l k = n i exp ⁡ ( [ E i ( b u l k ) − E F ] / k T ) = N A p_{bulk}=n_i\exp([E_i(bulk)-E_F]/kT)= N_A pbulk=niexp([Ei(bulk)EF]/kT)=NA
Φ F = k T q ln ⁡ ( N A n i ) \Phi_F=\frac{kT}{q}\ln\left(\frac{N_A}{n_i}\right) ΦF=qkTln(niNA)
In n-type, N D ≫ N A N_D\gg N_A NDNA, n b u l k = n i exp ⁡ ( [ E F − E i ( b u l k ) ] ) = N D n_{bulk}=n_i\exp([E_F-E_i(bulk)])=N_D nbulk=niexp([EFEi(bulk)])=ND
Φ F = − k T q ln ⁡ ( N D n i ) \Phi_F=-\frac{kT}{q}\ln\left(\frac{N_D}{n_i}\right) ΦF=qkTln(niND)
When V G = V T V_G=V_T VG=VT,
Φ S = 2 Φ F \Phi_S=2\Phi_F ΦS=2ΦF

Depletion Width W W W

Valid before strong inversion:

W = 2 ε S i q N A Φ S W=\sqrt{\frac{2\varepsilon_{Si}}{qN_A}\Phi_S} W=qNA2εSiΦS
At strong inversion:

W m = 2 ϵ k T q 2 N A ln ⁡ ( N A n i ) W_m=2\sqrt{\frac{\epsilon kT}{q^2N_A}\ln\left(\frac{N_A}{n_i}\right)} Wm=2q2NAϵkTln(niNA)
When V G = V T V_G=V_T VG=VT, Φ S = 2 Φ F \Phi_S=2\Phi_F ΦS=2ΦF, the depletion width
W T = 4 ε S i q N A Φ F W_T=\sqrt{\frac{4\varepsilon_{Si}}{qN_A}\Phi_F} WT=qNA4εSiΦF

Threshold Voltage V T V_T VT

For N(-channel)MOS (P-bulk)

V T = 2 Φ F + ϵ O X I D E x O ϵ S i 4 q N A ϵ S i Φ F V_T=2\Phi_F+\frac{\epsilon_{OXIDE}x_O}{\epsilon_{Si}}\sqrt{\frac{4qN_A}{\epsilon_{Si}}\Phi_F} VT=2ΦF+ϵSiϵOXIDExOϵSi4qNAΦF
For PMOS (N-bulk)
V T = 2 Φ F − ϵ O X I D E x O ϵ S i 4 q N D ϵ S i ( − Φ F ) V_T=2\Phi_F-\frac{\epsilon_{OXIDE}x_O}{\epsilon_{Si}}\sqrt{\frac{4qN_D}{\epsilon_{Si}}(-\Phi_F)} VT=2ΦFϵSiϵOXIDExOϵSi4qND(ΦF)
x O x_O xO is the thickness of the OXIDE

Cap-Voltage Characteristics

FET_第15张图片

PMOS (n-bulk)

FET_第16张图片

NMOS (p-bulk) a: Low Freq, b&c: Hi Freq

Supplement

JFET pinch-off

FET_第17张图片
Widening everywhere as V S D V_{SD} VSD grows

Why doesn’t current goto 0

If current is 0, the pinch-off will disappear. To maintain pinch-off, a non-zero current must be present.

How does current flow after pinch-off

FET_第18张图片

Gradual Channel Approx

Formula for depetion layer width remainis same at every point and edge of depletion layer is not a multi-valued function at any point

JFET Transconductance

g m = ∂ I D ( s a t ) ∂ V G g_m=\frac{\partial I_D(sat)}{\partial V_G} gm=VGID(sat)
Proportional to V G \sqrt{V_G} VG
e at every point and edge of depletion layer is not a multi-valued function at any point

JFET Transconductance

g m = ∂ I D ( s a t ) ∂ V G g_m=\frac{\partial I_D(sat)}{\partial V_G} gm=VGID(sat)
Proportional to V G \sqrt{V_G} VG

你可能感兴趣的:(Semiconductor)