约瑟夫环的推导

数学推导:(转载)

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。

为了讨论方便,先把问题稍微改变一下,并不影响原意:
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出
,剩下的人继续从0开始报数。求胜利者的编号。
我们知道第一个人(编号一定是(m-1)%n) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2
并且从k开始报0。
现在我们把他们的编号做一下转换:
k --> 0
k+1 --> 1
k+2 --> 2
...
...
k-3 --> n-3
k-2 --> n-2
序列1: 1, 2, 3, 4, …, n-2, n-1, n
序列2: 1, 2, 3, 4, … k-1, k+1, …, n-2, n-1, n
序列3: k+1, k+2, k+3, …, n-2, n-1, n, 1, 2, 3,…, k-2, k-1
序列4:1, 2, 3, 4, …, 5, 6, 7, 8, …, n-2, n-1
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:
∵ k=m%n;
∴ x' = x+k = x+ m%n ; 而 x+ m%n 可能大于n
∴x'= (x+ m%n)%n = (x+m)%n
得到 x‘=(x+m)%n
如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:
令f表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n].
递推公式:
f[1]=0;
f[i]=(f[i-1]+m)%i; (i>1)
有了这个公式,我们要做的就是从1-n顺序算出f的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1由于是逐级递推,不需要保存每个f,程序也是异常简单:
#include
int    main(   void   )
{
int    n, m, i, s=0;
printf ("N M = ");
scanf("%d%d", &n, &m);
for (i=2; i<=n; i++)
s=(s+m)%i;
printf ("The winner is %d\n", s+1);
return 0 ;
}
这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执行效率。
参照上面提供的思路,我认为可以类似的得到一个更易于明白的方法,设有(1,2,3,……,k-1,k,k+1,……,n)n个数,当k出列时,那么有
k+1 -->1
k+2 -->2
...
...
n -->n-k
1 -->n-k+1
...
...
k-1 -->n-1
由上面一组式子可以推出,若知道新产生的n-1个数中某个数x,那么很显然可以推出x在原数列里的位置,即x‘=(x+k)%n,由此,我们可以得到一个递推公式
f[1]=1
f[n]=(f[n-1]+k)%n (n>1)
如果你认为上式可以推出约瑟夫环问题的解,很不幸,你错了,上面的递推公式中,在某种情况下,f[n-1]+k会整除n,如n=2,k=3,这时我们修要对上式进行修正,
f[n]=(f[n-1]+k)%n;if(f[n]==0)f[n]=n;

你可能感兴趣的:(数据结构,算法)