- RK3588+昇腾AI|40TOPS算力AI盒子设计方案
ARM+FPGA+AI工业主板定制专家
AI盒子瑞芯微人工智能
综合视频智能AI分析系统介绍以计算机视觉技术为基础,AI赋能千行百业,依托人工智能视觉分析技术以及强大的“端+边”算力支撑,实时分析烟火,入侵等事件,同时结合云上预警业务平台,实现事件发现、预警、处置全流程闭环。设计架构系统架构视频智能识别系统自下而上分为“感知层、网络层、支撑层、应用层”四层,系统逻辑架构如下图所示:感知层对接前端感知设备,如视频监控、NVR、和其他物联感知设备,对重要通道和场所
- 主流渲染引擎/游戏引擎
力博荣三维可视化
图形学基础渲染引擎
meshoptimizeriswidelyusedinthegamesindustryaswellasinmanypipelinesforprocessing3Dcontentforreal-timerendering.Thisdocumentcontainsasmallselectionofprojectsthatrelyonmeshoptimizer.Forbrevity,theproject
- Aerospike
小的~~
nosqlAerospike
文章来源:拉勾教育Java高薪训练营第3期Aerospike介绍Aerospike(简称AS)是一个分布式,可扩展的键值存储的NoSQL数据库。T级别大数据高并发的结构化数据存储读写操作达微妙级,99%的响应可在1毫秒内实现采用混合架构,索引存储在内存中,而数据可存储在机械硬盘(HDD)或固态硬盘(SSD)上(也可存储在内存)AS内部在访问SSD屏蔽了文件系统层级,直接访问地址,保证了数据的读取速
- 使用Qt+opencv实现游戏辅助点击工具-以阴阳师为例
虎式坦克我最爱
游戏
注:本文章技术交流使用,不侵犯任何著作权。一.阴阳师辅助软件需要实现哪些功能?1.首先,对于肝绘卷拿角色而言,需要打困难28副本和结界突破循环刷绘卷碎片。这一功能让你每月免费悠闲地拿到最新角色,即使你是较新的玩家!2.有人喜欢打阴阳寮突破,因为结界卡可以合成勾玉,另外寮突破后给的寮勋章可以维持寮正常运转。3.御魂等副本,这款游戏的御魂是核心玩法。而且这只是一个辅助工具,不修改游戏内存,用来解放双手
- Flink在指定时间窗口内统计均值,超过阈值后报警
小的~~
flink均值算法大数据
1、需求统计物联网设备收集上来的温湿度数据,如果5分钟内的均值超过阈值(30摄氏度)则发出告警消息,要求时间窗口和阈值可在管理后台随时修改,实时生效(完成当前窗口后下一个窗口使用最新配置)。物联网设备的数据从kafka中读取,配置数据从mysql中读取,有个管理后台可以调整窗口和阈值大小。2、思路使用flink的双流join,配置数据使用广播流,设备数据使用普通流。3、实现代码packagecu.
- 深入了解与全面使用DeepSeek:从基础到高级应用
一位卑微的码农
人工智能大数据java-eespringboot
引言随着AI技术的发展,DeepSeek作为一款先进的智能助手,为用户提供了强大的文本生成、代码分析、数学公式处理等能力。本文将详细介绍DeepSeek的基础知识、安装配置、API调用方法以及高级应用技巧,帮助你充分挖掘这一工具的潜力。一、认识DeepSeek1.1DeepSeek简介DeepSeek是由深度求索公司开发的人工智能平台,它支持三种主要模式:基础模型(V3)、深度思考(R1)和联网搜
- 6个大数据应用案例
雪兽软件
科技前沿大数据
根据市场数据预测报告,到2026年,全球大数据市场可能达到2684亿美元。随着大数据市场的快速增长,组织正在利用大数据来获得洞察力,帮助他们做出更好的决策,改善运营,最终推动最佳增长。从医疗保健到金融,从零售到电信,大数据正被用于改变行业的运作方式,使企业能够创造新的收入来源,增强客户体验,提高运营效率。这个全面的博客将探索令人兴奋的大数据用例领域,探索商业组织如何利用数据获得洞察力,推动创新,并
- 人工智能的发展领域之GPU加速计算的应用概述、架构介绍与教学过程
m0_74824592
面试学习路线阿里巴巴人工智能架构
文章目录一、架构介绍GPU算力平台概述优势与特点二、注册与登录账号注册流程GPU服务器类型配置选择指南内存和存储容量网络带宽CPU配置三、创建实例实例创建步骤镜像选择与设置四、连接实例SSH连接方法远程桌面配置一、架构介绍GPU算力平台概述一个专注于GPU加速计算的专业云服务平台,隶属于软件和信息技术服务业。主要面向高校、科研机构和企业用户。该平台提供多种NVIDIAGPU选择,适用于机器学习、人
- Java 大视界 -- Java 大数据在智能体育中的应用与赛事分析(80)
青云交
大数据新视界Java大视界java大数据智能体育数据采集运动员训练赛事分析赛事预测
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- Java 大数据在智能供应链中的应用与优化(76)
青云交
大数据新视界Java大视界大数据智能供应链数据采集整合数据存储管理需求预测物流调度风险管理
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 【深度学习基础】什么是注意力机制
我的青春不太冷
深度学习人工智能注意力机制
文章目录一、注意力机制的核心地位:从补充到主导二、技术突破:从Transformer到多模态融合三、跨领域应用:从NLP到通用人工智能四、未来挑战与趋势结语参考链接注意力机制:深度学习的核心革命与未来基石在深度学习的发展历程中,注意力机制(AttentionMechanism)的引入堪称一场革命。它不仅解决了传统模型的根本性缺陷,更通过动态聚焦关键信息的能力,重塑了人工智能处理复杂任务的范式。本文
- 【第15章:量子深度学习与未来趋势—15.1 量子计算基础与量子机器学习的发展背景】
再见孙悟空_
#【深度学习・探索智能核心奥秘】机器翻译自然语言处理计算机视觉量子计算人工智能深度学习机器学习
想象一下,你正在用ChatGPT生成一篇小说,突然它卡在"主角穿越虫洞"的情节上——这不是因为想象力枯竭,而是传统计算机的晶体管已经烧到冒烟。当前AI大模型的参数规模每4个月翻一番,但摩尔定律的终结让经典计算机的算力增长首次跟不上AI的进化速度。这时候,量子计算带着它的"超能力"登场了:1台50量子位的量子计算机,处理某些问题的速度可达超级计算机的1亿倍。这场算力革命,正在改写深度学习的游戏规则。
- ch02离散仿真引擎基础——Unity3D学习
yesor_not
3D游戏学习c#unity游戏游戏策划
ch02离散仿真引擎基础——Unity3D学习一、简答题1.解释游戏对象(GameObjects)和资源(Assets)的区别与联系游戏对象(GameObjects):一般为玩家,敌人,环境等资源(Assets):一般包括声音,脚本,材质等区别与联系:对象一般是一些资源的集合体资源可以被多个对象使用资源作为模版,可实例化游戏中具体的对象。2、下载几个游戏案例,分别总结资源、对象组织的结构(指资源的
- 语音与自然语言处理(NLP):智能交互的核心技术
给生活加糖!
热门知识自然语言处理交互人工智能
随着人工智能(AI)技术的飞速发展,语音识别与自然语言处理(NaturalLanguageProcessing,NLP)成为了智能交互系统的核心技术。它们不仅改变了人们与计算机、设备的交互方式,也推动了众多行业的革新。从智能助手(如苹果的Siri、亚马逊的Alexa)到机器翻译、自动客服系统,语音和NLP技术正逐步融入日常生活,改善我们与数字世界的沟通方式。一、什么是语音识别与自然语言处理(NLP
- C++自研游戏引擎-碰撞检测组件-八叉树AABB检测算法实现
千年奇葩
三维引擎c++人工智能算法八叉树
八叉树碰撞检测是一种在三维空间中高效处理物体碰撞检测的算法,其原理可以类比为一个管理三维空间物体的智能系统。这个示例包含两个部分:八叉树部分用于宏观检测,AABB用于微观检测。AABB可以更换为均值或节点检测来提高检测精度。八叉树的构建确定根节点范围首先要为整个碰撞检测系统确定一个初始范围,这就像是为所有参与碰撞检测的物体划定一个“活动区域”。这个范围是一个能够完全容纳所有待检测物体的三维立方体空
- 电脑录屏软件 班迪录屏 Bandicam v8.0 注册版 下载与使用说明
2401_89543598
电脑windows
Bandicam是一款电脑录屏软件。主要功能:多模式录制:支持录制屏幕、游戏画面以及设备内容(如HDMI输入和摄像头)。自由调整录制区域:你可以选择全屏录制,也可以自定义录屏分辨率,满足多种需求。鼠标追随功能:录制时可追随鼠标移动,聚焦特定操作区域。重复捕捉功能:支持反复录制屏幕内容,方便制作教程或解说视频。快捷键设置:自定义快捷键,录制操作更加便捷高效。双音频混合录制:提供同时录制系统音效和麦克
- html5游戏引擎-Pharse.js学习笔记(一)
18520195858
游戏javascriptc/c++ViewUI
1.前言前几天随着flappybird这样的小游戏的火爆,使我这种也曾了解过html5技术的js业余爱好者也开始关注游戏开发。研究过两个个比较成熟的html5游戏引擎,感觉用引擎还是要方便一些。所以决定从今天正式开始研究html5游戏引擎,并且将从看官网demo的学习整理成博客和大家一起分享。我了解过cocos-2dforhtml5和phaser.js这两个引擎,其中前者比较复杂,对于有过coco
- DeepSeek 混合专家(MoE)架构技术原理剖析
计算机学长
通用大语言模型人工智能架构
DeepSeek混合专家(MoE)架构技术原理剖析在人工智能快速发展的当下,大规模语言模型不断突破创新,DeepSeek混合专家(MoE)架构脱颖而出,成为业内关注焦点。本文将深入剖析其技术原理,为大家揭开它的神秘面纱。一、MoE架构概述(一)基本概念混合专家(MixtureofExperts,MoE)架构,简单来说,就像是一个专家团队。在这个团队里,每个专家都是一个小型神经网络,各自擅长处理特定
- 【深度解析】ICLR:人工智能领域的顶级学术会议 | 顶会与SCI期刊的区别全攻略
X_taiyang18
人工智能
【深度解析】ICLR:人工智能领域的顶级学术会议|顶会与SCI期刊的区别全攻略简介在人工智能和机器学习领域,ICLR(InternationalConferenceonLearningRepresentations)被誉为“深度学习的顶级会议”。自2013年由深度学习三巨头中的YoshuaBengio和YannLeCun创办以来,ICLR迅速崛起,成为全球科研人员争相投稿的学术盛会。那么,ICLR
- 基于 GBase 数据库的海量数据处理与性能优化
big crab
数据库oracle
一、引言随着大数据时代的到来,海量数据的存储和高效处理成为各行业的核心需求。GBase系列数据库(包括GBase8a、GBase8s和GBase8c)以其强大的性能、灵活的存储架构以及高效的查询优化功能,成为处理大规模数据的理想选择。本文将从GBase数据库的特性出发,探讨如何在实际应用中进行海量数据的高效处理,同时提供相关代码示例,帮助开发者更好地理解和应用GBase数据库。二、GBase数据库
- 本地部署 DeepSeek:环境准备 + 详细步骤 + 高级部署方案 + 可视化工具集成 + 故障排除手册 + 性能优化建议
Katie。
人工智能技术发展aideepseek人工智能人工智能大模型
前言随着人工智能技术的迅猛发展,大语言模型(LLM)在多个行业中的应用日益广泛,从自然语言处理、内容生成到智能客服、医疗诊断等领域,AI正在深刻改变传统的工作方式和业务流程。DeepSeek作为一家新兴的AI公司,凭借其高效的AI模型和开源的优势,迅速在竞争激烈的AI市场中脱颖而出。其模型不仅在性能上表现出色,还通过开源策略吸引了大量开发者和企业的关注,形成了一个活跃的社区生态。然而,随着AI技术
- GBase 8a慢SQL优化案例-2 通过分析函数改写不等值关联排序取值
dudulang8088
sql数据库数据仓库
某气象现场一条查询语句,大数据场景下,单个机构查询耗时5分钟以上,需要分析,SQL语句如下:SELECTt.station_no,t.collect_time_stamp,t.r2020,t.topFROM(SELECTt1.station_no,t1.collect_time_stamp,t1.r2020,(SELECTCOUNT(*)+1FROM(SELECTstation_no,--站点编号
- 数据驱动业务增长,E-MapReduce 真实案例解析
Anna_Tong
mapreduce大数据云计算数据分析阿里云实时计算数据驱动
在大数据时代,数据已经成为企业核心竞争力的关键因素之一。无论是电商、金融、物流还是制造业,企业都在探索如何更高效地处理、分析和利用海量数据,以实现精准决策、优化运营并提升业务增长。然而,面对PB级甚至EB级的数据规模,传统的本地大数据计算架构往往难以满足性能和成本的要求。如何在保证计算效率的同时降低运维成本,成为企业数据战略中的关键挑战。阿里云E-MapReduce(EMR)作为一款云原生的大数据
- 全面解析:AI大模型入门教程,让你的学习之路不再迷茫,这个大模型学习路线非常详细收藏这篇就够了!
AGI大模型老王
人工智能学习大模型AI大模型大模型学习大模型教程大模型入门
前言AI大模型,作为当前人工智能领域的热点,凭借其强大的处理复杂数据和任务的能力,受到广泛的关注和应用。无论你是技术小白还是有一定基础的开发者,本教程都将带你从入门到实践,逐步掌握AI大模型的核心技术。基础知识大模型概述定义:AI大模型是一种拥有海量参数和强大计算能力的神经网络模型,能够处理复杂的数据和任务。应用:广泛应用于自然语言处理、图像识别、生成等领域。学习大模型的意义提升技术能力:掌握大模
- GBase 数据库的高性能架构与优化实践
big crab
数据库架构
引言随着信息技术的快速发展,数据库作为支撑各行各业数据存储和处理的核心技术之一,承担着越来越重要的角色。在现代企业中,大数据量、复杂查询和高并发处理已成为普遍需求。GBase数据库作为国内领先的数据库产品之一,提供了卓越的性能和灵活的架构设计,能够高效处理复杂的事务、分析查询和海量数据。本文将探讨GBase数据库的高性能架构,并结合实际案例展示其优化实践。一、GBase数据库架构概述GBase数据
- 区块链前线@2019.2.16
CryptoZen
区块链
落地实践:1.挪威推行原生加密货币作为其区块链智慧城市平台的唯一货币;2.美国食品和药物管理局FDA期望通过区块链技术提高药品供应链的安全;3.计划于今年夏季启动的莫斯科区块链创新基地目前需要一个知识产权评估机制;4.一份新的报告指出到2024年,基于区块链的全球能源公用事业市场将增长60%;5.阿根廷向巴拉圭出口农用化学品,接受比特币付款;6.现代汽车子公司与IBM合作,利用区块链技术改造其业务
- SaaS+AI工具推荐:最适合智能化转型的解决方案
saas
不论是传统软件还是SaaS,其核心目标始终如一——帮助企业解决问题、提升效率。然而,随着技术的飞速发展,SaaS正在超越传统模式,尤其是在与AI(人工智能)的深度融合中展现出了强大的潜力。这种“智能化”的转型不仅让企业获得了更具针对性和效率的服务,还让解决问题的方式更加灵活和高效。下面我们将从“更好的解决方案”和“智能化技术应用”两个层面,探讨SaaS在企业问题解决中的新路径。SaaS+AI:智能
- DeepSeek 引领的 AI 范式转变与存储架构的演进
星辰@Sea
人工智能其他人工智能
引言在过去的几十年中,人工智能(AI)技术经历了翻天覆地的变化,从最初的符号主义到连接主义,再到现在的深度学习,每一次技术革新都推动了AI能力的显著提升。而在这场变革中,DeepSeek作为一股不可忽视的力量,正在引领AI范式的转变,并深刻影响着存储架构的发展。在这篇博客中,我们将深入探讨DeepSeek如何推动AI范式的转变,以及这种转变对存储架构带来的深远影响。通过分析当前AI技术的发展趋势,
- Lua 数据库访问
froginwe11
开发语言
Lua数据库访问引言Lua是一种轻量级的编程语言,因其简洁性和高效性,常被用于游戏开发、嵌入系统和应用程序开发。在许多情况下,数据库访问是应用程序的核心功能之一。本文将深入探讨在Lua中如何进行数据库访问,包括连接数据库、执行查询、处理结果以及异常处理等。Lua数据库访问概述在Lua中,有多种方法可以用来访问数据库。以下是几种常用的数据库访问方式:直接使用数据库的命令行工具:例如,使用MySQL的
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统_bert+lstm
2301_76348014
程序员深度学习大数据知识图谱
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$