黑猴子的家:MapReduce-WordCount案例

在一堆给定的文本文件中统计输出每一个单词出现的总次数

Code -> GitHub
https://github.com/liufengji/hadoop_mapreduce.git

1、数据

https://www.jianshu.com/p/4221178f7cee

2、分析

按照mapreduce编程规范,分别编写Mapper,Reducer,Driver。


黑猴子的家:MapReduce-WordCount案例_第1张图片
黑猴子的家:MapReduce-WordCount案例_第2张图片

3、程序源代码

(1)定义一个Mapper类


import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

/**
 * KEYIN:默认情况下,是mr框架所读到的一行文本的起始偏移量,Long;
 * 在hadoop中有自己的更精简的序列化接口,所以不直接用Long,而是用LongWritable
 * VALUEIN:默认情况下,是mr框架所读到的一行文本内容,String;此处用Text
 * 
 * KEYOUT:是用户自定义逻辑处理完成之后输出数据中的key,在此处是单词,String;此处用Text
 * VALUEOUT,是用户自定义逻辑处理完成之后输出数据中的value,在此处是单词次数,Integer,此处用IntWritable
 * @author Administrator
 */
public class WordcountMapper extends Mapper{
    /**
     * map阶段的业务逻辑就写在自定义的map()方法中
     * maptask会对每一行输入数据调用一次我们自定义的map()方法
     */
    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        // 1 将maptask传给我们的文本内容先转换成String
        String line = value.toString();
        
        // 2 根据空格将这一行切分成单词
        String[] words = line.split(" ");
        
        // 3 将单词输出为<单词,1>
        for(String word:words){
            // 将单词作为key,将次数1作为value,以便于后续的数据分发,可以根据单词分发,
            // 以便于相同单词会到相同的reducetask中
            context.write(new Text(word), new IntWritable(1));
        }
    }
}

(2)定义一个Reducer类

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
 * KEYIN , VALUEIN 对应mapper输出的KEYOUT, VALUEOUT类型
 * 
 * KEYOUT,VALUEOUT 对应自定义reduce逻辑处理结果的输出数据类型 KEYOUT是单词 VALUEOUT是总次数
* @author Administrator
*/
public class WordcountReducer extends Reducer {

    /**
     * key,是一组相同单词kv对的key
     */
    @Override
    protected void reduce(Text key, Iterable values, Context context)
            throws IOException, InterruptedException {

        int count = 0;

        // 1 汇总各个key的个数
        for(IntWritable value:values){
            count +=value.get();
        }
        
        // 2输出该key的总次数
        context.write(key, new IntWritable(count));
    }
}

(3)定义一个Driver主类,用来描述job并提交job

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * 相当于一个yarn集群的客户端,
 * 需要在此封装我们的mr程序相关运行参数,指定jar包
 * 最后提交给yarn
 * @author Administrator
*/
public class WordcountDriver {
    public static void main(String[] args) throws Exception {
        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        // 8 配置提交到yarn上运行,windows和Linux变量不一致
//      configuration.set("mapreduce.framework.name", "yarn");
//      configuration.set("yarn.resourcemanager.hostname", "hadoop103");
        Job job = Job.getInstance(configuration);
        
        // 6 指定本程序的jar包所在的本地路径
//      job.setJar("/home/victor/wc.jar");
        job.setJarByClass(WordcountDriver.class);
        
        // 2 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(WordcountMapper.class);
        job.setReducerClass(WordcountReducer.class);
        
        // 3 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        
        // 4 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        
        // 5 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
//      job.submit();
        boolean result = job.waitForCompletion(true);
        System.exit(result?0:1);
    }
}

4、集群上测试

(1)将程序打成jar包,然后拷贝到hadoop集群中。

wordcount.jar

(2)启动hadoop集群

[victor@hadoop102 hadoop]$ sbin/start-all.sh

(3)执行wordcount程序

[victor@hadoop102 hadoop]$ hadoop jar  wc.jar com.victor.wordcount.WordcountDriver  \
/user/victor/input /user/victor/output1

5、本地测试

(1)在windows环境上配置HADOOP_HOME环境变量。

(2)在eclipse上运行程序

(3)注意:如果eclipse打印不出日志,在控制台上只显示
1.log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).
2.log4j:WARN Please initialize the log4j system properly.
3.log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

log4j.properties
需要在项目的src目录下,新建一个文件,命名为“log4j.properties”,在文件中填入

log4j.rootLogger=INFO, stdout  
log4j.appender.stdout=org.apache.log4j.ConsoleAppender  
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout  
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n  
log4j.appender.logfile=org.apache.log4j.FileAppender  
log4j.appender.logfile.File=target/spring.log  
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout  
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n  

你可能感兴趣的:(黑猴子的家:MapReduce-WordCount案例)