- 《李航 统计学习方法》学习笔记——第八章提升方法
eveiiii
统计学习python机器学习人工智能算法
提升方法8.1提升方法AdaBoost8.1.1提升方法的基本思路8.1.2AdaBoost算法8.1.3AdaBoost的例子(代码实现)8.2AdaBoost算法的训练误差分析定理8.1AdaBoost训练误差界定理8.2二分类问题AdaBoost训练误差界8.3AdaBoost算法的解释8.3.1前向分步算法8.3.2前向分步算法与AdaBoost8.4提升树8.4.1提升树模型8.4.2提
- 码上用它开始Flutter混合开发——FlutterBoost
阿里云云栖号
native容器
为什么要混合方案具有一定规模的App通常有一套成熟通用的基础库,尤其是阿里系App,一般需要依赖很多体系内的基础库。那么使用Flutter重新从头开发App的成本和风险都较高。所以在NativeApp进行渐进式迁移是Flutter技术在现有NativeApp进行应用的稳健型方式。闲鱼在实践中沉淀出一套自己的混合技术方案。在此过程中,我们跟GoogleFlutter团队进行着密切的沟通,听取了官方的
- flutter_boost接入及分析
Huang兄
Flutterandroidandroiddartflutterfluterboost
2019-09-12文章目录集成过程添加依赖在flutter_nodule侧在原生Android侧尝试flutter_boost流程在flutter中打开flutter或者原生在flutter中关闭页面flutter_boost地址:https://github.com/alibaba/flutter_boost集成之后的项目地址:https://github.com/huangyuanlove/
- Flutter接入FlutterBoost进行跳转,并实现Flutter与Native的通信
氦客
跨平台移动开发FlutterFlutterBoostAndroid接入跳转
FlutterBoost是什么FlutterBoost是阿里系闲鱼技术团队开源的Flutter插件。FlutterBoost的理念是将Flutter像Webview那样来使用。在现有应用程序中同时管理Native页面和Flutter页面并非易事,FlutterBoost帮你处理页面的映射和跳转,使你只需关心页面的名字和参数即可(通常可以是URL)。如何接入FlutterBoost一般参考Flutt
- GrandientBoostingClassifier函数介绍
浊酒南街
#机器学习算法GBDT
目录前言用法示例前言GradientBoostingClassifier是Scikit-learn库中的一个分类器,用于实现梯度提升决策树(GradientBoostingDecisionTrees,GBDT)算法。GBDT是一种强大的集成学习方法,能够通过逐步构建一系列简单的决策树(通常是浅树)来提高模型的预测性能。它在多个机器学习竞赛中表现出色,是用于分类和回归任务的流行选择。用法fromsk
- 3D晶格与图论:BFS在空间网络中的应用
t0_54coder
3d图论宽度优先个人开发
引言在现代计算科学中,3D晶格模拟是许多物理、化学和材料科学研究中的重要工具。通过将3D空间中的每个单元看作图论中的顶点(Vertex),并通过边(Edge)连接相邻的单元,可以构建一个复杂的图结构来模拟和分析这些晶格的特性。本文将探讨如何使用BoostGraphLibrary(BGL)来实现这一模拟,并通过广度优先搜索(Breadth-FirstSearch,BFS)来识别和统计晶格中的孤立互联
- 【C++】35.智能指针(2)
流星白龙
C++学习c++开发语言
文章目录5.shared_ptr和weak_ptr5.1shared_ptr循环引用问题5.2weak_ptr6.shared_ptr的线程安全问题7.C++11和boost中智能指针的关系8.内存泄漏8.1什么是内存泄漏,内存泄漏的危害8.2如何检测内存泄漏(了解)8.3如何避免内存泄漏9.定制删除器5.shared_ptr和weak_ptr5.1shared_ptr循环引用问题shared_p
- XGBoost vs LightGBM vs CatBoost:三大梯度提升框架深度解析
机器学习司猫白
机器学习理论机器学习xgboostlightgbmcatboost参数调优人工智能
梯度提升树(GradientBoostingDecisionTrees,GBDT)作为机器学习领域的核心算法,在结构化数据建模中始终占据统治地位。本文将深入解析三大主流实现框架:XGBoost、LightGBM和CatBoost,通过原理剖析、参数详解和实战对比,助你全面掌握工业级建模利器。一、算法原理深度对比1.XGBoost:工程优化的奠基者核心创新:二阶泰勒展开:利用损失函数的一阶导和二阶导
- ceph bluestore Blob 分析
only火车头
Ceph
cephversion:11.0.0bluestore包含一个非常重要的结构,Blob,本节主要分析Blob,注意ceph版本是基于11.0.0的。1.BlobstructBlob:publicboost::intrusive::set_base_hookextents;///unused_t;unused_tunused;///>buffer_map;Cache*cache;state_list
- 酷克数据启动鲲鹏原生应用开发合作
数据库
4月28日,北京酷克数据科技有限公司(以下简称“酷克数据”)与华为举办鲲鹏原生应用开发启动仪式。酷克数据将基于鲲鹏硬件底座、OpenEuler、开发套件KunpengDevKit、应用使能套件KunpengBoostKit开展面向金融、政务、电信、能源、交通等重点行业的原生应用开发,打造基于鲲鹏架构的云数仓产品解决方案,并持续发布性能更优的鲲鹏商用软件版本,帮助企业构建高效、稳定、自主可控的数据底
- 如何在Python上安装xgboost?
cda2024
python开发语言
在数据科学和机器学习领域,XGBoost无疑是一款备受推崇的算法工具。它以其高效、灵活和精确的特点,成为了众多数据科学家和工程师的首选。然而,对于初学者来说,如何在Python环境中成功安装XGBoost可能会成为一个挑战。本文将详细指导你在Python上安装XGBoost的过程,帮助你快速上手这一强大的机器学习工具。为什么选择XGBoost?在深入了解安装过程之前,我们先来看看XGBoost为何
- 如何在在 CentOS 中安装 OLama
gzgenius
思路人工智能
在CentOS中安装OLama是一个相对直接的过程。以下是详细的步骤:步骤1:安装依赖项在安装OLama之前,需要先安装一些必要的依赖项,包括编译器、框架和工具。sudoapt-getupdate&&sudoapt-getinstall-y\build-essential\python3\python3-setuptools\cmake\libboost-dev\libboost-system-d
- 预测股票走势的ai模型
roxxo
AI模型人工智能深度学习金融
AI股票走势预测模型用深度学习+时间序列分析来构建一个股票预测AI,基于历史数据预测未来走势。1.关键功能✅AI选股(基于财务数据+技术指标)✅股票走势预测(LSTM/Transformer)✅智能筛选高增长潜力股✅可视化分析2.关键技术数据来源:YahooFinance/AlphaVantage财务分析:PE、EPS、ROE、PB、成交量机器学习选股:随机森林/XGBoost深度学习预测:LST
- ubuntu18安装pyenv
Ramulet
Pythonnpmpycharmcentos
安装依赖sudoapt-getinstalllibprotobuf-devlibleveldb-devlibsnappy-devlibopencv-devlibboost-all-devlibhdf5-serial-devlibgflags-devlibgoogle-glog-devliblmdb-devprotobuf-compiler-ysudoapt-getinstallbzip2-ysud
- 配置easy3d环境经验总结
Aurora-vv
基础配置操作c++
该平台依赖boost库,cgal库和QT,下载需求版本后,boost直接安装,cgal解压后即可,qt安装之前的博客有。需注意的是该平台使用的是X64版本,如果cmake时不指定64位使用32位的话,会编译不通过mapple。需要修改CMAKE_INSTALL_PREFIX路径,默认的C:\ProgramFiles(x86)会导致生成install时没有管理员权限。cmake编译环境是config
- 光伏储能直流系统MATLAB仿真(PV光伏阵列+Boost DCDC变换器+负载+双向DCDC变换器+锂离子电池系统)
wlz249
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述光伏储能直流系统MATLAB仿真研究一、引言二、光伏储能直流系统的基本构成(一)PV光伏阵列(二)BoostDC/DC变换器(三)负载(四)双向DC/DC变换器(五)锂离子电池系统(六)控制模块(七)观测模块三、MATLAB仿真模型建立(一)光伏阵列模型(二)B
- windows下使用msys2中的库安装pcl
乞力马扎罗山的雪B
windowsc++
windows下只是想用下pcl,直接装PCL的allinone,用MSVC!!!直接装PCL的allinone,用MSVC!!!直接装PCL的allinone,用MSVC!!!5min搞定,下面别看了1.msys2安装以及配置下载安装:https://www.msys2.org/安装C++环境,toolchain,cmake等2.msys2下能使用的一些库当前的版本:eigen3.4boost1
- spark通过降低cores数量来提高成功率,错误记录之memory limit
BackToMeNow
Spark基础与提高Hivesparkhive内存优化physicalmemory
错误复现当数据量达到几百G约一亿条进行计算时,在原本的资源分配条件下失败的几率很高,失败的错误基本如下ContainerkilledbyYARNforexceedingmemorylimits.16.9GBof16GBphysicalmemoryused.Considerboostingspark.yarn.executor.memoryOverhead通常来讲,我们设计资源分配时一般指调整这几个
- 运行HQL时,报错:Container killed by YARN for exceeding memory limits
Michael312917
HiveonSparkhive
1出现问题现象搭建HiveOnSpark模式,运行HQL时:出现如下错误:ExecutorLostFailure(executor4exitedcausedbyoneoftherunningtasks)Reason:ContainerkilledbyYARNforexceedingmemorylimits.4.5GBof4.5GBphysicalmemoryused.Considerboostin
- python 调用 c_Python调用C模块(一):C api方式
weixin_40006779
python调用c
接前面Python与C相互调用(见http://www.linuxidc.com/Linux/2012-02/55040.htm),继续一点一点学习,顺便记录下笔记。大致计划如下(测试平台仅限于Windows和Linux,编译器限于MSVC、Mingw及linuxgcc):传统方式调用C模块用ctypes调用C动态库如有精力和兴趣,简单熟悉一下swig、boost.python,sip,shibo
- 基于光伏交直流混合微电网离网模式的双下垂控制Matlab Simulink仿真研究
BIdOeVNkOZSO
matlab算法开发语言
光伏交直流混合微电网离网(孤岛)模式双下垂控制Matlab/Simulink仿真模型交直流混合微电网结构:1.直流微电网,由光伏板+Boost变换器组成,最大输出功率10kW。2.交流微电网,由光伏板+Boost变换器+LCL逆变器组成,最大输出功率15kW。3.互联变换器(ILC),由LCL逆变器组成,用于连接交直流微电网。模型内容:1.直流微电网采用下垂控制,控制方式为电压电流双闭环,直流母线
- boost::asio教程(三) :boost udp编程
令狐掌门
C++boost库开发教程udp网络协议boostasioc++boost
boost::asio教程(一):tcpserver与tcpclient boost::asio教程(二):异步tcp boost::asio教程(三):boostudp编程 前面两篇主要讲了boostasiotcp编程,这一节来介绍boostudp编程,先来看看udp用到的类和方法.ip::udp::socket 与tcp类似,在tcp时用到的socket是ip::tcp::sock
- 数据挖掘常用算法
kaiyuanheshang
AI数据挖掘算法人工智能
文章目录基于机器学习~~线性/逻辑回归~~树模型~~贝叶斯~~~~聚类~~集成算法神经网络~~支持向量机~~~~降维算法~~基于机器学习线性/逻辑回归类似单层神经网络y=k*x+b树模型优点可以做可视化分析速度快结果稳定依赖前期对业务和数据的理解贝叶斯贝叶斯依赖先验概率,先验知识越准,结果越好聚类集成算法xgboostlightbgm神经网络在文本、视觉领域效果非常好。但是过程黑盒,缺乏解释性支持
- 相机-雷达联合标定direct_visual_lidar_calibration开源算法编译踩坑记录
HyperZhu
ROSUbuntu算法相机-雷达联合标定
基于场景的相机-雷达联合标定编译记录direct_visual_lidar_calibration编译1.本机环境Ubuntu18.04+Melodic相关依赖版本:Cmake-3.18.0gcc-8.4.0pcl-1.13.02.相关依赖#Installdependenciessudoaptinstalllibomp-devlibboost-all-devlibglm-devlibglfw3-d
- 细说机器学习算法之ROC曲线用于模型评估
Melancholy 啊
机器学习算法人工智能数据挖掘python
系列文章目录第一章:Pyhton机器学习算法之KNN第二章:Pyhton机器学习算法之K—Means第三章:Pyhton机器学习算法之随机森林第四章:Pyhton机器学习算法之线性回归第五章:Pyhton机器学习算法之有监督学习与无监督学习第六章:Pyhton机器学习算法之朴素贝叶斯第七章:Pyhton机器学习算法之XGBoost第八章:Pyhton机器学习算法之GBDT第九章:Pyhton机器学
- 分类算法:梯度提升树(GBT)算法原理
kkchenjj
数据挖掘机器学习算法分类数据挖掘
分类算法:梯度提升树(GBT)算法原理1.简介1.1梯度提升树的起源与发展梯度提升树(GradientBoostingTree,GBT)是一种强大的机器学习算法,它基于提升方法的原理,通过迭代地构建一系列弱分类器并组合它们来形成一个强分类器。GBT的起源可以追溯到Freund和Schapire在1996年提出的AdaBoost算法,但真正将梯度提升应用于树模型的是JeromeH.Friedman在
- 梯度提升用于高效的分类与回归
纠结哥_Shrek
分类回归数据挖掘
使用决策树(DecisionTree)实现梯度提升(GradientBoosting)主要是模拟GBDT(GradientBoostingDecisionTrees)的原理,即:第一棵树拟合原始数据计算残差(负梯度方向)用新的树去拟合残差累加所有树的预测值重复步骤2-4,直至达到指定轮数下面是一个纯Python+PyTorch实现GBDT(梯度提升决策树)的代码示例。1.纯Python实现梯度提升
- boostrap组件
柒染
csshtml5html
Bootstrap来自Twitter(推特),是目前最受欢迎的前端框架。Bootstrap是基于HTML,css,JavaScript的,它简洁灵活,使得web开发更加快速。框架:顾名思义就是一套架构,它有一套比较完整的网页功能解决方案,而且控制权在框架本身,有预制的样式库,组件和插件。使用者要按照框架所规定的某种规范进行开发。这是我所学到的用CSS基础,所以我要分享给你们,希望可以帮助到你们。组
- xgboost-spark-scala
maokunnn
DMxgboostsparkscala
今天学习写scala,拿xgboost试一下~先记一下xgboost调参要点:7.xgboost中比较重要的参数介绍(1)objective[default=reg:linear]定义学习任务及相应的学习目标,可选的目标函数如下:“reg:linear”–线性回归。“reg:logistic”–逻辑回归。“binary:logistic”–二分类的逻辑回归问题,输出为概率。“binary:logi
- C++|开源日志库log4cpp和glog
奇树谦
C/C++/qtc++开源开发语言
文章目录`log4cpp`和`glog`对比1.**功能对比**2.**易用性和配置**3.**性能**4.**线程安全**5.**日志输出**6.**功能扩展**7.**适用场景**8.**总结**其它开源C++日志库1.**spdlog**2.**easylogging++**3.**Boost.Log**4.**loguru**5.**PocoLogging**6.**QtLogging(Q
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST