很多时候我们不知道摄像机的内参数矩阵,并且我们也不太关注内参数到底是多少,因为我们仅仅关心如何得到两幅图像的稠密匹配,或者两幅图像的差别——例如我们只想计算两幅图像的视差图,或者说得到两幅立体图像对的深度图就足够了。既然不知道摄像机的内参数,那么就只能借助对极约束来达到目的了。通过计算两幅图像的基础矩阵F,然后利用对极约束矫正极线为平行线的方法,可以很好的实现这个目标,该方法也被称为Hartly方法,在OpenCV中由cv::stereoRectifyUncalibrated函数实现。
立体图像的极线矫正需要三个步骤:
(1)提取特征点并匹配,参考http://blog.sina.com.cn/s/blog_4298002e01013w4z.html
(2)计算基本矩阵F,参考http://blog.sina.com.cn/s/blog_4298002e01013w9a.html
(3)极线矫正。
Hartly方法的函数原型如下:
//! computes the rectification transformation for an uncalibrated stereo camera (zero distortion is assumed)
CV_EXPORTS_W bool stereoRectifyUncalibrated( const Mat& points1, const Mat& points2,
const Mat& F, Size imgSize,
CV_OUT Mat& H1, CV_OUT Mat& H2,
double threshold=5 );
该函数输入参数为两幅图像的匹配特征点,基本矩阵F以及图像的尺寸,返回的参数是两幅图像各自对应的单应变换矩阵H1和H2。只需要对两幅图像按照H1和H2做单应变换,即可得到矫正后图像。假设I为图像,变换如下:
I_recty = H*I
需要说明一点,该函数的前两个参数Mat& points1, Mat& points2与cv::findFundamentalMat的前两个参数并不是相同的数据结构。它们虽然可以是同一个匹配点集,但是他们的数据结构是完全不同的!cv::findFundamentalMat中传入的匹配点集要求是2xN或者Nx2的矩阵,但是cv::stereoRectifyUncalibrated中要求传入的匹配点集必须是1x2N或者2Nx1的矩阵!在很多文档中都说他们的参数是一样的,这其实是一个天大的错误,如果用计算F的匹配点集直接传给图像矫正函数,程序将直接崩溃。正确的做法是利用cv::Mat的构造函数,直接从vector
cv::stereoRectifyUncalibrated函数默认原始图像是没有径向畸变的,因此在矫正图像之前,最好先对原始图像做径向矫正。
另外需要注意的一点,函数返回的单应变换矩阵H1和H2都是double类型,也即CV_64F类型,若不是该类型的矩阵,与之相乘会报错。下面是示例代码:
// 假设前面我们已经得到两幅图像的匹配特征点,并计算出了基本矩阵F,同时得到了匹配特征点的inlier
// Mat m_matLeftImage;
// Mat m_matRightImage;
// vector
// vector
// Mat m_Fundamental;
// 计算图像矫正的单应变换矩阵
Mat m_LeftH;
Mat m_RightH;
stereoRectifyUncalibrated(Mat(m_LeftInlier), Mat(m_RightInlier), m_Fundamental,
Size(m_matLeftImage.cols, m_matLeftImage.rows),
m_LeftH, m_RightH);
// 任意指定一个内参数矩阵K,不会影响计算结果,此处设为单位阵。
Mat K = Mat::eye(3, 3, CV_64F); // 注意一定是double类型
Mat invK = K.inv(DECOMP_SVD);
Mat LeftR = invK*m_LeftH*K; // 根据单应变换矩阵计算左图摄像机在空间中的变换矩阵R1
Mat RightR = invK*m_RightH*K; // 计算右图摄像机在空间中的变换矩阵R2
Mat LeftMap1, LeftMap2;
Mat RightMap1, RightMap2;
Mat Distort; // 径向畸变为0,设为空矩阵
Size UndistSize(m_matLeftImage.cols, m_matLeftImage.rows);
// 计算左右两幅图像的映射矩阵
initUndistortRectifyMap(K, Distort, LeftR, K, UndistSize, CV_32FC1, LeftMap1, LeftMap2);
initUndistortRectifyMap(K, Distort, RightR, K, UndistSize, CV_32FC1, RightMap1, RightMap2);
// 把原始图像投影到新图像上,得到矫正图像
Mat m_LeftRectyImage;
Mat m_RightRectyImage;
remap(m_matLeftImage, m_LeftRectyImage, LeftMap1, LeftMap2, INTER_LINEAR);
remap(m_matRightImage, m_RightRectyImage, RightMap1, RightMap2, INTER_LINEAR);
// 显示结果
cvNamedWindow( "left image", 1);
cvShowImage("left image", &(IplImage(m_LeftRectyImage)));
cvNamedWindow( "right image", 1);
cvShowImage("right image", &(IplImage(m_RightRectyImage)));
cvWaitKey( 0 );
cvDestroyWindow( "left image" );
cvDestroyWindow( "right image" );