排序算法

排序算法

来自 维客

Jump to: navigation, search
排序算法
O(n²)或更坏
冒泡排序 插入排序
快速排序 选择排序
O(n3/2)或更好
二叉树排序 桶排序
Comb sort 计数排序
堆排序 归并排序
Pigeonhole sort 基数排序
希尔排序 Smoothsort

所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

目录

[隐藏]
  • 1 分類
  • 2 排列算法列表
    • 2.1 穩定的
    • 2.2 不穩定
    • 2.3 不實用的排序算法
  • 3 排序的算法
    • 3.1 插入排序
    • 3.2 冒泡排序
    • 3.3 选择排序
    • 3.4 快速排序
    • 3.5 堆排序
  • 4 平均时间复杂度
  • 5 补充
[ 编辑]

分類

在计算机科学所使用的排序算法通常被分類為:

  • 計算的複雜度(最差、平均、和最好表現),依據串列(list)的大小(n)。一般而言,好的表現是O。(n log n),且壞的行為是Ω(n2)。對於一個排序理想的表現是O(n)。僅使用一個抽象關鍵比較運算的排序算法總平均上總是至少需要Ω(n log n)。
  • 記憶體使用量(以及其他電腦資源的使用)
  • 穩定度:穩定排序算法會依照相等的關鍵(換言之就是值)維持紀錄的相對次序。也就是一個排序算法是穩定的,就是當有兩個有相等關鍵的紀錄RS,且在原本的串列中R出現在S之前,在排序過的串列中R也將會是在S之前。
  • 一般的方法:插入、交換、選擇、合併等等。交換排序包含冒泡排序(bubble sort)和快速排序(quicksort)。選擇排序包含shaker排序和堆排序(heapsort)。

當相等的元素是無法分辨的,比如像是整數,穩定度並不是一個問題。然而,假設以下的數對將要以他們的第一個數字來排序。

(4, 1)  (3, 1)  (3, 7)  (5, 6)

在這個狀況下,有可能產生兩種不同的結果,一個是依照相等的鍵值維持相對的次序,而另外一個則沒有:

(3, 1)  (3, 7)  (4, 1)  (5, 6)   (維持次序)
(3, 7)  (3, 1)  (4, 1)  (5, 6)   (次序被改變)

不穩定排序算法可能會在相等的鍵值中改變紀錄的相對次序,但是穩定排序算法從來不會如此。不穩定排序算法可以被特別地時作為穩定。作這件事情的一個方式是人工擴充鍵值的比較,如此在其他方面相同鍵值的兩個物件間之比較,就會被決定使用在原先資料次序中的條目,當作一個同分決賽。然而,要記住這種次序通常牽涉到額外的空間負擔。

[ 编辑]

排列算法列表

在這個表格中,n是要被排序的紀錄數量以及k是不同鍵值的數量。

[ 编辑]

穩定的

  • 冒泡排序(bubble sort) — O(n2)
  • 鸡尾酒排序 (Cocktail sort, 雙向的冒泡排序) — O(n2)
  • 插入排序 (insertion sort)— O(n2)
  • 桶排序 (bucket sort)— O(n); 需要 O(k) 額外 記憶體
  • 计数排序 (counting sort) — O(n+k); 需要 O(n+k) 額外 記憶體
  • 歸併排序 (merge sort)— O(n log n); 需要 O(n) 額外記憶體
  • 原地歸併排序 — O(n2)
  • 二叉树排序 (Binary tree sort) — O(n log n); 需要 O(n) 額外記憶體
  • 鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 額外記憶體
  • 基數排序 (radix sort)— O(n·k); 需要 O(n) 額外記憶體
  • Gnome sort — O(n2)
  • Library sort — O(n log n) with high probability, 需要 (1+ε)n 額外記憶體
[ 编辑]

不穩定

  • 選擇排序 (selection sort)— O(n2)
  • 希爾排序 (shell sort)— O(n log n) 如果使用最佳的現在版本
  • Comb sort — O(n log n)
  • 堆排序 (heapsort)— O(n log n)
  • Smoothsort — O(n log n)
  • 快速排序 (quicksort)— O(n log n) 期望時間, O(n2) 最壞情況; 對於大的、亂數串列一般相信是最快的已知排序
  • Introsort — O(n log n)
  • Patience sorting — O(n log n + k) 最外情況時間, 需要 額外的 O(n + k) 空間, 也需要找到最長的遞增子序列(longest increasing subsequence)
[ 编辑]

不實用的排序算法

  • Bogo排序 — O(n × n!) 期望時間, 無窮的最壞情況。
  • Stupid sort — O(n3); 遞迴版本需要 O(n2) 額外記憶體
  • Bead sort — O(n) or O(√n), 但需要特別的硬體
  • Pancake sorting — O(n), 但需要特別的硬體
[ 编辑]

排序的算法

排序的算法有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常见的排序算法。这里面插入排序和冒泡排序又被称作简单排序,他们对空间的要求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较小范围内的排序算法。

  • 插入排序
  • 冒泡排序
  • 选择排序
  • 快速排序
  • 堆排序
  • 归并排序
  • 基数排序
  • 希尔排序
[ 编辑]

插入排序

插入排序是这样实现的:

  1. 首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
  2. 从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
  3. 重复2号步骤,直至原数列为空。

插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。

[ 编辑]

冒泡排序

冒泡排序是这样实现的:

  1. 首先将所有待排序的数字放入工作列表中。
  2. 从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
  3. 重复2号步骤,直至再也不能交换。

冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。


[ 编辑]

选择排序

选择排序是这样实现的:

  1. 设数组内存放了n个待排数字,数组下标从1开始,到n结束。
  2. i=1
  3. 从数组的第i个元素开始到第n个元素,寻找最小的元素。
  4. 将上一步找到的最小元素和第i位元素交换。
  5. 如果i=n-1算法结束,否则回到第3步

选择排序的平均时间复杂度也是O(n²)的。

[ 编辑]

快速排序

现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。

[ 编辑]

堆排序

堆排序与前面的算法都不同,它是这样的:

  1. 首先新建一个空列表,作用与插入排序中的"有序列表"相同。
  2. 找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。
  3. 重复2号步骤,直至原数列为空。

堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。

看起来似乎堆排序与插入排序有些相像,但他们其实是本质不同的算法。至少,他们的时间复杂度差了一个数量级,一个是平方级的,一个是对数级的。

[ 编辑]

平均时间复杂度

  • 插入排序 O(n2)
  • 冒泡排序 O(n2)
  • 选择排序 O(n2)
  • 快速排序 O(n log n)
  • 堆排序 O(n log n)
  • 归并排序 O(n log n)
  • 基数排序 O(n)
  • 希尔排序 O(n1.25)
[ 编辑]

补充

所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

分类

在计算机科学所使用的排序算法通常被分类为:

计算的复杂度(最差、平均、和最好表现),依据串列(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对於一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。

记忆体使用量(以及其他电脑资源的使用)

稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。

一般的方法:插入、交换、选择、合併等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。

当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。

(4, 1) (3, 1) (3, 7) (5, 6)

在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:

(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)

(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)

不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。

排列算法列表

在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。

稳定的

冒泡排序(bubble sort) — O(n2)

鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)

插入排序 (insertion sort)— O(n2)

桶排序 (bucket sort)— O(n); 需要 O(k) 额外 记忆体

计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外 记忆体

归併排序 (merge sort)— O(n log n); 需要 O(n) 额外记忆体

原地归併排序 — O(n2)

二叉树排序 (Binary tree sort) — O(n log n); 需要 O(n) 额外记忆体

鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体

基数排序 (radix sort)— O(n·k); 需要 O(n) 额外记忆体

Gnome sort — O(n2)

Library sort — O(n log n) with high probability, 需要 (1+ε)n 额外记忆体

不稳定

选择排序 (selection sort)— O(n2)

希尔排序 (shell sort)— O(n log n) 如果使用最佳的现在版本

Comb sort — O(n log n)

堆排序 (heapsort)— O(n log n)

Smoothsort — O(n log n)

快速排序 (quicksort)— O(n log n) 期望时间, O(n2) 最坏情况; 对於大的、乱数串列一般相信是最快的已知排序

Introsort — O(n log n)

Patience sorting — O(n log n + k) 最外情况时间, 需要 额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)

不实用的排序算法

Bogo排序 — O(n × n!) 期望时间, 无穷的最坏情况。

Stupid sort — O(n3); 递迴版本需要 O(n2) 额外记忆体

Bead sort — O(n) or O(√n), 但需要特别的硬体

Pancake sorting — O(n), 但需要特别的硬体

排序的算法

排序的算法有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常见的排序算法。这里面插入排序和冒泡排序又被称作简单排序,他们对空间的要求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较小范围内的排序算法。

插入排序

冒泡排序

选择排序

快速排序

堆排序

归并排序

基数排序

希尔排序

插入排序

插入排序是这样实现的:

首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。

从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。

重复2号步骤,直至原数列为空。

插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。

冒泡排序

冒泡排序是这样实现的:

首先将所有待排序的数字放入工作列表中。

从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。

重复2号步骤,直至再也不能交换。

冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。

选择排序

选择排序是这样实现的:

设数组内存放了n个待排数字,数组下标从1开始,到n结束。

i=1

从数组的第i个元素开始到第n个元素,寻找最小的元素。

将上一步找到的最小元素和第i位元素交换。

如果i=n-1算法结束,否则回到第3步

选择排序的平均时间复杂度也是O(n²)的。

快速排序

现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。

堆排序

堆排序与前面的算法都不同,它是这样的:

首先新建一个空列表,作用与插入排序中的"有序列表"相同。

找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。

重复2号步骤,直至原数列为空。

堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。

看起来似乎堆排序与插入排序有些相像,但他们其实是本质不同的算法。至少,他们的时间复杂度差了一个数量级,一个是平方级的,一个是对数级的。

平均时间复杂度

插入排序 O(n2)

冒泡排序 O(n2)

选择排序 O(n2)

快速排序 O(n log n)

堆排序 O(n log n)

归并排序 O(n log n)

基数排序 O(n)

希尔排序 O(n1.25)

取自"http://www.wiki.cn/wiki/%E6%8E%92%E5%BA%8F%E7%AE%97%E6%B3%95"

取自" http://www.wiki.cn/wiki/%E6%8E%92%E5%BA%8F%E7%AE%97%E6%B3%95"

你可能感兴趣的:(排序算法)