官方解题报告:http://bestcoder.hdu.edu.cn/blog/2015-multi-university-training-contest-6-solutions-by-zju/
表示很难看。。。。orz
1003题 链接:http://acm.hdu.edu.cn/showproblem.php?pid=5355
Cake
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1138 Accepted Submission(s): 152
Special Judge
Problem Description
There are
m
soda and today is their birthday. The
1-st soda has prepared
n
cakes with size
1,2,…,n. Now
1-st soda wants to divide the cakes into
m
parts so that the total size of each part is equal.
Note that you cannot divide a whole cake into small pieces that is each cake must be complete in the
m
parts. Each cake must belong to exact one of
m
parts.
Input
There are multiple test cases. The first line of input contains an integer
T, indicating the number of test cases. For each test case:
The first contains two integers
n
and
m
(1≤n≤105,2≤m≤10), the number of cakes and the number of soda.
It is guaranteed that the total number of soda in the input doesn’t exceed 1000000. The number of test cases in the input doesn’t exceed 1000.
Output
For each test case, output "YES" (without the quotes) if it is possible, otherwise output "NO" in the first line.
If it is possible, then output
m
lines denoting the
m
parts. The first number
si
of
i-th line is the number of cakes in
i-th part. Then
si
numbers follow denoting the size of cakes in
i-th part. If there are multiple solutions, print any of them.
Sample Input
Sample Output
NO YES 1 5 2 1 4 2 2 3 NO YES 3 1 5 9 3 2 6 7 3 3 4 8
Source
2015 Multi-University Training Contest 6
题意:n块蛋糕(大小1--n)分给m个人,要求每个人得到蛋糕大小总和相等
#include
#include
#include
#include
#include
#include
1006题 链接:http://acm.hdu.edu.cn/showproblem.php?pid=5358
First One
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 757 Accepted Submission(s): 230
Problem Description
soda has an integer array
a1,a2,…,an. Let
S(i,j)
be the sum of
ai,ai+1,…,aj. Now soda wants to know the value below:
∑i=1n∑j=in(⌊log2S(i,j)⌋+1)×(i+j)
Note: In this problem, you can consider
log20
as 0.
Input
There are multiple test cases. The first line of input contains an integer
T, indicating the number of test cases. For each test case:
The first line contains an integer
n
(1≤n≤105), the number of integers in the array.
The next line contains
n
integers
a1,a2,…,an
(0≤ai≤105).
Output
For each test case, output the value.
Sample Input
Sample Output
Source
2015 Multi-University Training Contest 6
题意:求
思路:利用S(i,j)单调性, log2(S(i,j))+1= k =2^(k-1)<= S(i,j)<2^k
考虑枚举log(sum(i,j)+1的值,记为k,然后统计(i+j)的和即可。
对于每一个k,找到所有满足2^(k-1)<=sum(i,j)<=2^k-1的(i+j),
k<=2*log2(10^5)<34
转载请注明出处:寻找&星空の孩子
#include
#include
#include
#define LL long long
using namespace std;
LL num[100005];
LL sum[100005];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
LL n;
scanf("%lld",&n);
num[0]=sum[0]=0;
for(int i=1; i<=n; i++)
{
scanf("%lld",&num[i]);
sum[i]=sum[i-1]+num[i];
}
LL ans=0;
for(LL k=1; k<=34; k++)
{
LL l=1,r=0;//注意r的初始值在l的左边;因为存在1个值的情况!
LL KL=1LL<<(k-1);
if(k==1) KL--;
LL KR=1LL<<(k);
for(LL i=1; i<=n; i++)
{
l=max(i,l);//区间左边界
while(l<=n&&sum[l]-sum[i-1]=KL&&sum[r+1]-sum[i-1]
1008题 链接:http://acm.hdu.edu.cn/showproblem.php?pid=5360
Hiking
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 544 Accepted Submission(s): 290
Special Judge
Problem Description
There are
n
soda conveniently labeled by
1,2,…,n. beta, their best friends, wants to invite some soda to go hiking. The
i-th soda will go hiking if the total number of soda that go hiking except him is no less than
li
and no larger than
ri. beta will follow the rules below to invite soda one by one:
1. he selects a soda not invited before;
2. he tells soda the number of soda who agree to go hiking by now;
3. soda will agree or disagree according to the number he hears.
Note: beta will always tell the truth and soda will agree if and only if the number he hears is no less than
li
and no larger than
ri, otherwise he will disagree. Once soda agrees to go hiking he will not regret even if the final total number fails to meet some soda's will.
Help beta design an invitation order that the number of soda who agree to go hiking is maximum.
Input
There are multiple test cases. The first line of input contains an integer
T, indicating the number of test cases. For each test case:
The first contains an integer
n
(1≤n≤105), the number of soda. The second line constains
n
integers
l1,l2,…,ln. The third line constains
n
integers
r1,r2,…,rn.
(0≤li≤ri≤n)
It is guaranteed that the total number of soda in the input doesn't exceed 1000000. The number of test cases in the input doesn't exceed 600.
Output
For each test case, output the maximum number of soda. Then in the second line output a permutation of
1,2,…,n
denoting the invitation order. If there are multiple solutions, print any of them.
Sample Input
4 8 4 1 3 2 2 1 0 3 5 3 6 4 2 1 7 6 8 3 3 2 0 5 0 3 6 4 5 2 7 7 6 7 6 8 2 2 3 3 3 0 0 2 7 4 3 6 3 2 2 5 8 5 6 5 3 3 1 2 4 6 7 7 6 5 4 3 5
Sample Output
7 1 7 6 5 2 4 3 8 8 4 6 3 1 2 5 8 7 7 3 6 7 1 5 2 8 4 0 1 2 3 4 5 6 7 8
Source
2015 Multi-University Training Contest 6
题意:问邀请的顺序,使得最终去的人最多,每个人有一个区间[l,r]的人数要求
分析:用优先队列维护,按照r从小到大;不是很难注意细节。
#include
#include
#include
#include
using namespace std;
const int N = 100005;
struct nnn
{
int l,r,id;
}node[N];
struct NNNN
{
int r,id;
friend bool operator<(NNNN aa,NNNN bb)
{
return aa.r>bb.r;
}
};
priority_queueq;
bool cmp1(nnn aa, nnn bb)
{
return aa.l=node[i].l&&ans<=node[i].r)
{
now.r=node[i].r;
now.id=node[i].id;
q.push(now);
//printf("in = %d\n",now.id);
i++;
ff=1;
}
if(ff)i--;
while(!q.empty())
{
now=q.top(); q.pop();
if(now.r1)
printf(" %d",id[i]);
else if(i==1)
printf("%d",id[i]);
if(ans)fff=1;
for( i=1; i<=n; i++)
if(vist[i]==0&&fff)
printf(" %d",i);
else if(vist[i]==0)
printf("%d",i),fff=1;
printf("\n");
}
}
1011题 链接:http://acm.hdu.edu.cn/showproblem.php?pid=5363
Key Set
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 420 Accepted Submission(s): 275
Problem Description
soda has a set
S
with
n
integers
{1,2,…,n}. A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of
S
are key set.
Input
There are multiple test cases. The first line of input contains an integer
T
(1≤T≤105), indicating the number of test cases. For each test case:
The first line contains an integer
n
(1≤n≤109), the number of integers in the set.
Output
For each test case, output the number of key sets modulo 1000000007.
Sample Input
Sample Output
Source
2015 Multi-University Training Contest 6
#include
#define LL long long
#define mod 1000000007
LL ppow(LL a,LL b)
{
LL c=1;
while(b)
{
if(b&1) c=c*a%mod;
b>>=1;
a=a*a%mod;
}
return c;
}
int main()
{
int T;
LL n;
scanf("%d",&T);
while(T--)
{
scanf("%lld",&n);
printf("%lld\n",ppow(2,n-1)-1);
}
return 0;
}