跑通SOLOV1-V2实例分割代码,并训练自己的数据集。

系统平台:Ubuntu18.04  

硬件平台:RTX2080 super

cuda和cudnn版本:cuda10.0   cudnn:7.5.6

pytorch版本:pytorch1.2.0

环境安装:

#创建solo虚拟环境
conda create -n solo python=3.7 -y
conda activate solo

#下载solo源码,并编译
git clone https://github.com/WXinlong/SOLO.git
cd SOLO
pip install -r requirements/build.txt
pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
pip install -v -e .   #不要忘记了后面的这个点,记得将cuda添加到系统环境中。

完成上面操作就可以跑demo了,但是solo只给了单张图片的预测,摄像头预测是无法运行的,下面的代码是摄像头实时检测的代码,大家可以试一下:

import argparse
import cv2
import torch
import mmcv
from mmdet.apis import inference_detector, init_detector, show_result, show_result_ins

def main():
    config_file = '../configs/solov2/solov2_light_448_r18_fpn_8gpu_3x.py'
    checkpoint_file = '../checkpoints/SOLOv2_LIGHT_448_R18_3x.pth'
    model = init_detector(config_file, checkpoint_file, device='cuda:0')
    camera = cv2.VideoCapture(0)
    print('Press "Esc", "q" or "Q" to exit.')
    i=0
    while True:
        i += 1
        ret_val, img = camera.read()
        result = inference_detector(model, img)
        #cv2.imshow('test',img)
        #cv2.waitKey(1)
        #ch = cv2.waitKey(1)
        #if ch == 27 or ch == ord('q') or ch == ord('Q'):
         #   break
        image = show_result_ins(img, result, model.CLASSES, score_thr=0.25, out_file="demo_out.jpg")
        #mmcv.imwrite(image, 'zzw'+str(i)+'.jpg')
        #mmcv.imshow_det_bboxes()
        mmcv.imshow(image,win_name='zzw',wait_time=1)
if __name__ == '__main__':
    main()

数据集准备:

我们标注数据集使用的是labelme来标注,每一个图片会生成一个json标注文件,标注完成后我们需要将我们所有json文件合并为一个json文件。代码如下:

# -*- coding:utf-8 -*-
# !/usr/bin/env python
 
import argparse
import json
import matplotlib.pyplot as plt
import skimage.io as io
import cv2
from labelme import utils
import numpy as np
import glob
import PIL.Image
 
class MyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return super(MyEncoder, self).default(obj)
 
class labelme2coco(object):
    def __init__(self, labelme_json=[], save_json_path='./tran.json'):
        '''
        :param labelme_json: 所有labelme的json文件路径组成的列表
        :param save_json_path: json保存位置
        '''
        self.labelme_json = labelme_json
        self.save_json_path = save_json_path
        self.images = []
        self.categories = []
        self.annotations = []
        # self.data_coco = {}
        self.label = []
        self.annID = 1
        self.height = 0
        self.width = 0
        self.save_json()
 
    def data_transfer(self):
 
        for num, json_file in enumerate(self.labelme_json):
            with open(json_file, 'r') as fp:
                data = json.load(fp)  # 加载json文件
                self.images.append(self.image(data, num))
                for shapes in data['shapes']:
                    label = shapes['label']
                    if label not in self.label:
                        self.categories.append(self.categorie(label))
                        self.label.append(label)
                    points = shapes['points']#这里的point是用rectangle标注得到的,只有两个点,需要转成四个点
                    points.append([points[0][0],points[1][1]])
                    points.append([points[1][0],points[0][1]])
                    self.annotations.append(self.annotation(points, label, num))
                    self.annID += 1
 
    def image(self, data, num):
        image = {}
        img = utils.img_b64_to_arr(data['imageData'])  # 解析原图片数据
        # img=io.imread(data['imagePath']) # 通过图片路径打开图片
        # img = cv2.imread(data['imagePath'], 0)
        height, width = img.shape[:2]
        img = None
        image['height'] = height
        image['width'] = width
        image['id'] = num + 1
        image['file_name'] = data['imagePath'].split('/')[-1]
        self.height = height
        self.width = width
        return image
 
    def categorie(self, label):
        categorie = {}
        categorie['supercategory'] = 'Cancer'
        categorie['id'] = len(self.label) + 1  # 0 默认为背景
        categorie['name'] = label
        return categorie
 
    def annotation(self, points, label, num):
        annotation = {}
        annotation['segmentation'] = [list(np.asarray(points).flatten())]
        annotation['iscrowd'] = 0
        annotation['image_id'] = num + 1
        # annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)
        # list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list
        annotation['bbox'] = list(map(float, self.getbbox(points)))
        annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
        # annotation['category_id'] = self.getcatid(label)
        annotation['category_id'] = self.getcatid(label)
        annotation['id'] = self.annID
        return annotation
 
    def getcatid(self, label):
        for categorie in self.categories:
            if label == categorie['name']:
                return categorie['id']
        return 1
 
    def getbbox(self, points):
        # img = np.zeros([self.height,self.width],np.uint8)
        # cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA)  # 画边界线
        # cv2.fillPoly(img, [np.asarray(points)], 1)  # 画多边形 内部像素值为1
        polygons = points
 
        mask = self.polygons_to_mask([self.height, self.width], polygons)
        return self.mask2box(mask)
 
    def mask2box(self, mask):
        '''从mask反算出其边框
        mask:[h,w]  0、1组成的图片
        1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
        '''
        # np.where(mask==1)
        index = np.argwhere(mask == 1)
        rows = index[:, 0]
        clos = index[:, 1]
        # 解析左上角行列号
        left_top_r = np.min(rows)  # y
        left_top_c = np.min(clos)  # x
 
        # 解析右下角行列号
        right_bottom_r = np.max(rows)
        right_bottom_c = np.max(clos)
 
        # return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
        # return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
        # return [left_top_c, left_top_r, right_bottom_c, right_bottom_r]  # [x1,y1,x2,y2]
        return [left_top_c, left_top_r, right_bottom_c - left_top_c,
                right_bottom_r - left_top_r]  # [x1,y1,w,h] 对应COCO的bbox格式
 
    def polygons_to_mask(self, img_shape, polygons):
        mask = np.zeros(img_shape, dtype=np.uint8)
        mask = PIL.Image.fromarray(mask)
        xy = list(map(tuple, polygons))
        PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
        mask = np.array(mask, dtype=bool)
        return mask
 
    def data2coco(self):
        data_coco = {}
        data_coco['images'] = self.images
        data_coco['categories'] = self.categories
        data_coco['annotations'] = self.annotations
        return data_coco
 
    def save_json(self):
        self.data_transfer()
        self.data_coco = self.data2coco()
        # 保存json文件
        json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder) 
 
labelme_json = glob.glob('C:/Users/86183/Desktop/shujuji/train/json1/*.json')
# labelme_json=['./Annotations/*.json']
labelme2coco(labelme_json, 'C:/Users/86183/Desktop/train/test.json')

转换完之后,我们需要生成如下几个文件夹。annotations存储的是我们上面转换的json文件。train2017和val2017存储的是训练和测试的图片。

跑通SOLOV1-V2实例分割代码,并训练自己的数据集。_第1张图片跑通SOLOV1-V2实例分割代码,并训练自己的数据集。_第2张图片

创建我们自己的数据集。在SOLO/mmdet/datasets文件夹下面创建我们自己的数据集,我创建的是pig_data.py文件:

from .coco import CocoDataset
from .registry import DATASETS

@DATASETS.register_module
class pig_data(CocoDataset):
    CLASSES = ['pig_standing','pig_kneeling','pig_side_lying','pig_action_unknown','pig_climbing','person']

修改SOLO/mmdet/datasets/__init__.py文件,将我们的数据集加进去。

from .builder import build_dataset
from .cityscapes import CityscapesDataset
from .coco import CocoDataset
from .custom import CustomDataset
from .dataset_wrappers import ConcatDataset, RepeatDataset
from .loader import DistributedGroupSampler, GroupSampler, build_dataloader
from .registry import DATASETS
from .voc import VOCDataset
from .wider_face import WIDERFaceDataset
from .xml_style import XMLDataset
from .pig_data import pig_data    #把我们的数据集加进去

__all__ = [
    'CustomDataset', 'XMLDataset', 'CocoDataset', 'VOCDataset',
    'CityscapesDataset', 'GroupSampler', 'DistributedGroupSampler',
    'build_dataloader', 'ConcatDataset', 'RepeatDataset', 'WIDERFaceDataset',
    'DATASETS', 'build_dataset','pig_data'
]

修改训练文件:

模型训练文件在SOLO/configs/solo文件夹下,我修改的是solo_r50_fpn_8gpu_3x.py。你想要训练哪个就修改哪个。

# model settings
model = dict(
    type='SOLO',
    pretrained='torchvision://resnet50',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3), # C2, C3, C4, C5
        frozen_stages=1,
        style='pytorch'),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        start_level=0,
        num_outs=5),
    bbox_head=dict(
        type='SOLOHead',
        num_classes=6,
        in_channels=256,
        stacked_convs=7,
        seg_feat_channels=256,
        strides=[8, 8, 16, 32, 32],
        scale_ranges=((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048)),
        sigma=0.2,
        num_grids=[40, 36, 24, 16, 12],
        cate_down_pos=0,
        with_deform=False,
        loss_ins=dict(
            type='DiceLoss',
            use_sigmoid=True,
            loss_weight=3.0),
        loss_cate=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
    ))
# training and testing settings
train_cfg = dict()
test_cfg = dict(
    nms_pre=500,
    score_thr=0.1,
    mask_thr=0.5,
    update_thr=0.05,
    kernel='gaussian',  # gaussian/linear
    sigma=2.0,
    max_per_img=100)
# dataset settings
dataset_type = 'pig_data'    #这里是你的数据集的名字
data_root = '/home/uc/SOLO/configs/solo/data/coco/'  #这是你数据集所在文件夹
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(type='Resize',
         img_scale=[(1333, 800), (1333, 768), (1333, 736),     #这里可以修改图片的大小。
                    (1333, 704), (1333, 672), (1333, 640)],
         multiscale_mode='value',
         keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    imgs_per_gpu=1,
    workers_per_gpu=1,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',  #读取训练数据集
        img_prefix=data_root + 'train2017/',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',   #读取测试数据集
        img_prefix=data_root + 'val2017/',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    step=[27, 33])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
total_epochs = 36
device_ids = range(8)
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/solo_release_r50_fpn_8gpu_3x'    #存储模型路径
load_from = None
resume_from = None
workflow = [('train', 1)]

这样就可以完成solo训练自己的数据集了,经过测试分割效果很出色,边缘信息也比较好。

你可能感兴趣的:(深度学习)