系统平台:Ubuntu18.04
硬件平台:RTX2080 super
cuda和cudnn版本:cuda10.0 cudnn:7.5.6
pytorch版本:pytorch1.2.0
#创建solo虚拟环境
conda create -n solo python=3.7 -y
conda activate solo
#下载solo源码,并编译
git clone https://github.com/WXinlong/SOLO.git
cd SOLO
pip install -r requirements/build.txt
pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
pip install -v -e . #不要忘记了后面的这个点,记得将cuda添加到系统环境中。
完成上面操作就可以跑demo了,但是solo只给了单张图片的预测,摄像头预测是无法运行的,下面的代码是摄像头实时检测的代码,大家可以试一下:
import argparse
import cv2
import torch
import mmcv
from mmdet.apis import inference_detector, init_detector, show_result, show_result_ins
def main():
config_file = '../configs/solov2/solov2_light_448_r18_fpn_8gpu_3x.py'
checkpoint_file = '../checkpoints/SOLOv2_LIGHT_448_R18_3x.pth'
model = init_detector(config_file, checkpoint_file, device='cuda:0')
camera = cv2.VideoCapture(0)
print('Press "Esc", "q" or "Q" to exit.')
i=0
while True:
i += 1
ret_val, img = camera.read()
result = inference_detector(model, img)
#cv2.imshow('test',img)
#cv2.waitKey(1)
#ch = cv2.waitKey(1)
#if ch == 27 or ch == ord('q') or ch == ord('Q'):
# break
image = show_result_ins(img, result, model.CLASSES, score_thr=0.25, out_file="demo_out.jpg")
#mmcv.imwrite(image, 'zzw'+str(i)+'.jpg')
#mmcv.imshow_det_bboxes()
mmcv.imshow(image,win_name='zzw',wait_time=1)
if __name__ == '__main__':
main()
我们标注数据集使用的是labelme来标注,每一个图片会生成一个json标注文件,标注完成后我们需要将我们所有json文件合并为一个json文件。代码如下:
# -*- coding:utf-8 -*-
# !/usr/bin/env python
import argparse
import json
import matplotlib.pyplot as plt
import skimage.io as io
import cv2
from labelme import utils
import numpy as np
import glob
import PIL.Image
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(MyEncoder, self).default(obj)
class labelme2coco(object):
def __init__(self, labelme_json=[], save_json_path='./tran.json'):
'''
:param labelme_json: 所有labelme的json文件路径组成的列表
:param save_json_path: json保存位置
'''
self.labelme_json = labelme_json
self.save_json_path = save_json_path
self.images = []
self.categories = []
self.annotations = []
# self.data_coco = {}
self.label = []
self.annID = 1
self.height = 0
self.width = 0
self.save_json()
def data_transfer(self):
for num, json_file in enumerate(self.labelme_json):
with open(json_file, 'r') as fp:
data = json.load(fp) # 加载json文件
self.images.append(self.image(data, num))
for shapes in data['shapes']:
label = shapes['label']
if label not in self.label:
self.categories.append(self.categorie(label))
self.label.append(label)
points = shapes['points']#这里的point是用rectangle标注得到的,只有两个点,需要转成四个点
points.append([points[0][0],points[1][1]])
points.append([points[1][0],points[0][1]])
self.annotations.append(self.annotation(points, label, num))
self.annID += 1
def image(self, data, num):
image = {}
img = utils.img_b64_to_arr(data['imageData']) # 解析原图片数据
# img=io.imread(data['imagePath']) # 通过图片路径打开图片
# img = cv2.imread(data['imagePath'], 0)
height, width = img.shape[:2]
img = None
image['height'] = height
image['width'] = width
image['id'] = num + 1
image['file_name'] = data['imagePath'].split('/')[-1]
self.height = height
self.width = width
return image
def categorie(self, label):
categorie = {}
categorie['supercategory'] = 'Cancer'
categorie['id'] = len(self.label) + 1 # 0 默认为背景
categorie['name'] = label
return categorie
def annotation(self, points, label, num):
annotation = {}
annotation['segmentation'] = [list(np.asarray(points).flatten())]
annotation['iscrowd'] = 0
annotation['image_id'] = num + 1
# annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)
# list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list
annotation['bbox'] = list(map(float, self.getbbox(points)))
annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
# annotation['category_id'] = self.getcatid(label)
annotation['category_id'] = self.getcatid(label)
annotation['id'] = self.annID
return annotation
def getcatid(self, label):
for categorie in self.categories:
if label == categorie['name']:
return categorie['id']
return 1
def getbbox(self, points):
# img = np.zeros([self.height,self.width],np.uint8)
# cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 画边界线
# cv2.fillPoly(img, [np.asarray(points)], 1) # 画多边形 内部像素值为1
polygons = points
mask = self.polygons_to_mask([self.height, self.width], polygons)
return self.mask2box(mask)
def mask2box(self, mask):
'''从mask反算出其边框
mask:[h,w] 0、1组成的图片
1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
'''
# np.where(mask==1)
index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]
# 解析左上角行列号
left_top_r = np.min(rows) # y
left_top_c = np.min(clos) # x
# 解析右下角行列号
right_bottom_r = np.max(rows)
right_bottom_c = np.max(clos)
# return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
# return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
# return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2]
return [left_top_c, left_top_r, right_bottom_c - left_top_c,
right_bottom_r - left_top_r] # [x1,y1,w,h] 对应COCO的bbox格式
def polygons_to_mask(self, img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
xy = list(map(tuple, polygons))
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def data2coco(self):
data_coco = {}
data_coco['images'] = self.images
data_coco['categories'] = self.categories
data_coco['annotations'] = self.annotations
return data_coco
def save_json(self):
self.data_transfer()
self.data_coco = self.data2coco()
# 保存json文件
json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder)
labelme_json = glob.glob('C:/Users/86183/Desktop/shujuji/train/json1/*.json')
# labelme_json=['./Annotations/*.json']
labelme2coco(labelme_json, 'C:/Users/86183/Desktop/train/test.json')
转换完之后,我们需要生成如下几个文件夹。annotations存储的是我们上面转换的json文件。train2017和val2017存储的是训练和测试的图片。
创建我们自己的数据集。在SOLO/mmdet/datasets文件夹下面创建我们自己的数据集,我创建的是pig_data.py文件:
from .coco import CocoDataset
from .registry import DATASETS
@DATASETS.register_module
class pig_data(CocoDataset):
CLASSES = ['pig_standing','pig_kneeling','pig_side_lying','pig_action_unknown','pig_climbing','person']
修改SOLO/mmdet/datasets/__init__.py文件,将我们的数据集加进去。
from .builder import build_dataset
from .cityscapes import CityscapesDataset
from .coco import CocoDataset
from .custom import CustomDataset
from .dataset_wrappers import ConcatDataset, RepeatDataset
from .loader import DistributedGroupSampler, GroupSampler, build_dataloader
from .registry import DATASETS
from .voc import VOCDataset
from .wider_face import WIDERFaceDataset
from .xml_style import XMLDataset
from .pig_data import pig_data #把我们的数据集加进去
__all__ = [
'CustomDataset', 'XMLDataset', 'CocoDataset', 'VOCDataset',
'CityscapesDataset', 'GroupSampler', 'DistributedGroupSampler',
'build_dataloader', 'ConcatDataset', 'RepeatDataset', 'WIDERFaceDataset',
'DATASETS', 'build_dataset','pig_data'
]
模型训练文件在SOLO/configs/solo文件夹下,我修改的是solo_r50_fpn_8gpu_3x.py。你想要训练哪个就修改哪个。
# model settings
model = dict(
type='SOLO',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3), # C2, C3, C4, C5
frozen_stages=1,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=0,
num_outs=5),
bbox_head=dict(
type='SOLOHead',
num_classes=6,
in_channels=256,
stacked_convs=7,
seg_feat_channels=256,
strides=[8, 8, 16, 32, 32],
scale_ranges=((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048)),
sigma=0.2,
num_grids=[40, 36, 24, 16, 12],
cate_down_pos=0,
with_deform=False,
loss_ins=dict(
type='DiceLoss',
use_sigmoid=True,
loss_weight=3.0),
loss_cate=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
))
# training and testing settings
train_cfg = dict()
test_cfg = dict(
nms_pre=500,
score_thr=0.1,
mask_thr=0.5,
update_thr=0.05,
kernel='gaussian', # gaussian/linear
sigma=2.0,
max_per_img=100)
# dataset settings
dataset_type = 'pig_data' #这里是你的数据集的名字
data_root = '/home/uc/SOLO/configs/solo/data/coco/' #这是你数据集所在文件夹
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='Resize',
img_scale=[(1333, 800), (1333, 768), (1333, 736), #这里可以修改图片的大小。
(1333, 704), (1333, 672), (1333, 640)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
imgs_per_gpu=1,
workers_per_gpu=1,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json', #读取训练数据集
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json', #读取测试数据集
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[27, 33])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 36
device_ids = range(8)
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/solo_release_r50_fpn_8gpu_3x' #存储模型路径
load_from = None
resume_from = None
workflow = [('train', 1)]
这样就可以完成solo训练自己的数据集了,经过测试分割效果很出色,边缘信息也比较好。