JIra+Python+Pyechart 通过分析jira数据生成图表并展示,出具质量可视化的测试报告

背景:
我本人不愿意写测试报告,但领导规定每个迭代后都需要发一份测试报告,让我比较难受(不是不会写,主要是测试报告内容比较详实,几乎没有人会细看),没有人看就=流于形式
那么,有没有一种方法,既满足了减轻测试人员的压力,又完成了目标,同时还能整合出一个一目了然的且具有参考意义的测试报告呢?
 

过程:
首先,因为我们公司使用jira作为迭代管理工具,我想了一下,如果能把jira数据拉下来就好了,于是我去查了一下,发现python是可以对jira进行操作的,那么就可以开整了
我的思路是这样的
1、利用python操作jira获取到我们的预期的数据
2、对数据进行处理,是数据满足我们生成图表的要求
3、使用pychart将处理好的数据变成测试报告的html
4、集成到jenkins上并接受他人的传参,做成千人千面,大家都可以使用的工具

先安装jira和pyecharts

在cmd中运行以下命令
pip install pyecharts
pip install jira
JIra+Python+Pyechart 通过分析jira数据生成图表并展示,出具质量可视化的测试报告_第1张图片

 

然后新建一个py文件,定义一些操作jira的方法,解析数据的方法,并返回满足生产图片的数据

operationJira.py


from jira import JIRA
class jiraOperation():
    def loginJira(server,username,password):
        jira = JIRA(server = server,basic_auth =(username,password))
        return jira
    #登录jira并返回一个jira的实例

    def serchissues(jira,jql,max_results = 50000,fields='components,summary,customfield_10903,labels'):
        """serchiuess
        @:param jql:JQL,str
        @:param max_results: max results,int,default 100
        """
        try:
            issues = jira.search_issues(jql,fields=fields, maxResults=max_results)
            #默认返回指定的三个字段,且最大结果行为50000
            return issues
        except Exception as  e:
            print(e)
    #根据jql查询jira的信息

    def analytical(jira_result):
        summarys = {}
        components = {}
        custom_fields = {}
        reason_bugs = {}
        for x in jira_result:
            a = str(x.fields.summary)  #概要
            if  x.fields.components == []:
                b = 'None'
            else:
                b = str(x.fields.components[0])  #模块 返回的是一个jira的components对象  需要转成str
            c = str(x.fields.customfield_10903)  #归因分析
            d = str(x.key)      #jira号
            e = str(x.fields.labels[0])
            summarys.setdefault(d,a)    #{jira号:概要}
            components.setdefault(b,0) #{模块:出现次数}
            if b in components.keys():
                components[b] = components[b] + 1
            custom_fields.setdefault(c,0)  #{归因分析:出现次数}
            if c in custom_fields.keys():
                custom_fields[c] = custom_fields[c] + 1
            reason_bugs.setdefault((d+a),c) #{jira号 jira概要:jira归因分析}
            labels = e
        return (summarys,components,custom_fields,reason_bugs,labels)
    #解析jira数据并返回

 

数据有了,接下来就是根据数据生成图表了

makeChart.py

# -*- coding=utf-8 -*-
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import Bar, Line,Pie,Tab,Page,Timeline
from pyecharts.components import Table
from pyecharts.options import ComponentTitleOpts

class charts():
    def make(jira_finail_result):
        timeline_bar = Timeline().add_schema(is_auto_play=True,pos_top='7.5%',height='2%')
        timeline_pie = Timeline().add_schema(is_auto_play=True,pos_top='7.5%',height='2%')

        line_name = []
        line_data = []
        for jira_result in jira_finail_result:
            summarys = jira_result[0]
            components = jira_result[1]
            custom_fields = jira_result[2]
            reason_bugs = jira_result[3]
            labels = jira_result[4]
            x = Faker.choose()

            bar = (
                Bar()
                    .add_xaxis(list(components.keys()))
                    .add_yaxis("", list(components.values()))
                    # .reversal_axis() #横向展示
                    .set_global_opts(title_opts=opts.TitleOpts("{}".format(labels)),
                                     xaxis_opts=opts.AxisOpts(name_rotate=30, axislabel_opts={"rotate": 30})))
            timeline_bar.add(bar,'')
#柱状图




            pie = (
                Pie()
                    .add("2", [list(z) for z in zip(list(custom_fields.keys()), list(custom_fields.values()))],
                         radius=["40%", "70%"],
                         label_opts=opts.LabelOpts(
                             position="outside",
                             formatter="{b}:{c}\n{per|{d}%}",
                             background_color="#eee",
                             border_color="#aaa",
                             border_width=1,
                             border_radius=2,
                             rich={
                                 "a": {"color": "#989", "lineHeight": '44%', "align": "center"},
                                 "abg": {
                                     "backgroundColor": "#e3e3e3",
                                     "width": "30%",
                                     "align": "right",
                                     "height": 21,
                                     "borderRadius": [0, 0, 0, 0],
                                 },
                                 "hr": {
                                     "borderColor": "#aaa",
                                     "width": "71%",
                                     "borderWidth": 12,
                                     "height": 12,
                                 },
                                 "b": {"fontSize": 15, "lineHeight": 10},
                                 "per": {
                                     "color": "#eee",
                                     "backgroundColor": "#324456",
                                     "padding": [0.5, 0.5],
                                     "borderRadius": 1,
                                 },
                             },
                         ),
                         )
                    # .set_global_opts(title_opts=opts.TitleOpts(title="标题")) #小标题
                    .set_global_opts(legend_opts=opts.LegendOpts(pos_left='83%'),
                                     title_opts=opts.TitleOpts(title="{}".format(labels)),
                                     tooltip_opts=opts.TooltipOpts(is_show=False, ))
            )
            timeline_pie.add(pie, "")
#饼图


            line_name.append(labels)
            line_data.append(len(summarys))


            analysetable = (
                Table()
                .add( ["事件",'详情'],
                      [
                        ['需求情况','填写实际的迭代的需求情况'],
                        ['bug情况','填写实际的迭代的bug情况'],
                        ['总结','对本次发布进行总结']
                      ]
                      )
                .set_global_opts(title_opts=ComponentTitleOpts(title="迭代总结"))
            )
#表格


            bug_list = []
            for one in reason_bugs:
                bug_list.append([reason_bugs[one],one])
            bugtable = (
                Table()
                    #.add(["bug原因", 'jira号 概要'], [[1, 'sha'], [1, 2]])   # demo样例
                    .add(["bug原因", 'jira号 概要'], bug_list)
                    .set_global_opts(title_opts=ComponentTitleOpts(title="Bug归因列表"))
            )
#bug列表清单




        line = (
            Line()
                .add_xaxis(line_name,)
                .add_yaxis("迭代测试bug数",line_data, is_smooth=True)
                .set_series_opts(textstyle_opts=opts.TextStyleOpts(font_size=50))
                .set_global_opts(title_opts=opts.TitleOpts(title="迭代测试bug数"),
                                 xaxis_opts=opts.AxisOpts(name_gap=500,name_rotate=30,axislabel_opts={"rotate": 30},
                                 )
                                 )
        )
#折线图
        report_name = '测试报告'

        tab = (
            Tab()
            .add(analysetable,'迭代总结')
            .add(timeline_bar, '迭代bug功能模块统计')
            .add(timeline_pie,'迭代bug归因分析')
            .add(line,'迭代测试bug数')
            .add(bugtable, 'bug列表')
        )
        #标签页
        tab.render('''../reports/''' + str(report_name) + ".html")
        #以标签页为格式生成图表

再创建一个run.py文件来调用前两个文件

 

from script.operationJira import jiraOperation
from script.makeChart import charts

jira = jiraOperation.loginJira('url','username','password')
#登录


jira_jql = [
    """labels = 1128迭代测试bug ORDER BY component DESC""",
    """labels = 1219迭代测试bug ORDER BY component DESC""",
    """labels = "2020/1/9" ORDER BY  component  DESC""",
    #"""labels = "2020/1/9" ORDER BY  component  DESC""",
            ]
#每个迭代的jql放进去就好了


jira_finail_result = []
for jql in  jira_jql:
    jira_result = jiraOperation.serchissues(jira,jql)
    #查询
    jira_result = list(jiraOperation.analytical(jira_result))
    jira_finail_result.append(jira_result)
    #对jira返回对象解析并整理成字典


charts.make(jira_finail_result)
#生成图表

 

效果如图

 

JIra+Python+Pyechart 通过分析jira数据生成图表并展示,出具质量可视化的测试报告_第2张图片

 

 

 

 

pyecharts官方文档

https://pyecharts.org/#/

你可能感兴趣的:(python,jira生成图表,数据分析,python,jira生成图表,pyechart)