网络编程与并发-线程、进程、协程

1、操作系统背景知识


1.1 为什么要有操作系统?

现代计算机系统是由一个或者多个处理器,主存,磁盘,打印机,键盘,鼠标显示器,网络接口以及各种其他输入输出设备组成的复杂系统,每位程序员不可能掌握所有系统实现的细节,并且管理优化这些部件是一件挑战性极强的工作。所以,我们需要为计算机安装一层软件,成为操作系统,任务就是用户程序提供一个简单清晰的计算机模型,并管理以上所有设备。

定义也就有了:操作系统是一个用来协调、管理和控制计算机硬件和软件资源的系统程序,它位于硬件和应用程序之间。

程序是运行在系统上的具有某种功能的软件,比如说浏览器,音乐播放器等。

操作系统的内核的定义:操作系统的内核是一个管理和控制程序,负责管理计算机的所有物理资源,其中包括:文件系统、内存管理、设备管理和进程管理。


1.2 操作系统历史


1.2.1 真空管与穿孔卡片(无操作系统)

过程:
万能程序员们将对应于程序和数据的已穿孔的纸带(或卡片)装入输入机,然后启动输入机把程序和数据输入计算机内存,接着通过控制台开关启动程序针对数据运行;计算完毕,打印机输出计算结果;用户取走结果并卸下纸带(或卡片)后,才让下一个用户上机。

注意点:

  • 程序员需要在墙上的计时表上预约时间
  • 同一时刻只有一个程序在内存中被CPU调用运行(串行的)

优缺点:

优点:程序员在申请的时间段内独享整个资源,即时的调试自己的程序,如果有bug可以当场处理

缺点:这对于计算机提供商来说是一种浪费(你买一台电脑4000块,那 一年中你用365比只用1天,肯定是省成本的,物尽其用)

网络编程与并发-线程、进程、协程_第1张图片


1.2.2 晶体管和批处理系统

一代计算机的问题:

人机交互太多了(输入–>计算–>输出 输入–>计算–>输出 输入–>计算–>输出 )

解决办法:
把一堆人的输入攒成一大波输入,然后顺序计算(这是有问题的,但是第二代计算没有解决)再把计算结果攒成一大波输出,这就是批处理系统

操作系统前身:

在收集了大约一个小时的批量作业之后,这些卡片被读入磁带,然后磁带被送到机房里并装到磁带上。然后磁带被送到机房里并装到磁带机上。随后,操作员装入一个特殊的程序(此乃现代操作系统的前身),它负责从磁带上读入第一个作业(job,一个或一组程序)并运行,其输出写到第二个磁带上,而且不打印。每个作业结束后,操作系统自动的从磁带上读入下一个作业并且运行。当一整批的作业全部结束后,操作员去下输入和输出磁带,讲输入磁带换成下一批作业,并且把输出磁带拿到一台1041机器上进行脱机(不与主计算机联机)打印

优点:批处理

缺点: 1 图的中间还有俩小人 2 仍然是顺序计算

网络编程与并发-线程、进程、协程_第2张图片

网络编程与并发-线程、进程、协程_第3张图片


1.2.3 集成电路芯片和多道程序设计

针对二代计算机的两个主要问题

  • 开发出SPOOLING技术:

卡片被拿到机房后能够很快的将作业从卡片读入磁盘,于是任何时刻当一个作业结束时,操作系统就能将一个作业从磁带读出,装进空出啦的内存区域运行,这种技术叫做同时的外部设备联机操作:SPOOLING该技术同时用于输出。当采用了这种技术后,就不在需要IBM1401机了,也不必将磁带搬来搬去了(中间俩小人失业了),强化了操作系统的功能

开发出多道程序设计,用于解决顺序执行的问题:

在7094机上(程序运行的机器),若当前作业因等待磁带或等待其他IO操作而暂停,CPU就处于休闲状态直至IO操作完成,对于CPU密集的科学计算,IO操作少,浪费时间不明显,对于商业数据处理,IO等待能到达80%~90%,所以必须解决CPU浪费的现象。

解决方案:将内存分为几个部分,每一部分存放不同的作业,如图1-5所示。当一个作业等待IO完成时,另一个作业可以使用CPU,内存中放足够的作业,则CPU的利用率能接近100%

此时的第三代计算机适合大型科学计算和繁忙的商务数据处理,但,本质上其仍是一个批处理系统。虽然解决了诸如以上问题,但多个作业必须在全部运行结束后,才能得到结果,从一个作业的提交到运算结果取回往往长达数小时。想象一个场景:A君 B君 C君 三个程序员同时在调试程序,一旦A君写错一个逗号,那么可能需要半天的时间才能看到结果,因为B君C君的结果也同时运算出来了。时间必然要长。一言以蔽之:大家一起存作业,大家一起去数据(磁带)

许多程序员怀念第一代独享的计算机,可以即时调试自己的程序。为了满足程序员们很快可以得到响应,出现了分时操作系统

  • 分时操作系统:多个联机终端+多道技术

20个客户端同时加载到内存,有17在思考,3个在运行,cpu就采用多道的方式处理内存中的这3个程序,由于客户提交的一般都是简短的指令而且很少有耗时长的,索引计算机能够为许多用户提供快速的交互式服务,所有的用户都以为自己独享了计算机资源


1.2.4 个人计算机

随着大规模集成电路的发展,每平方厘米的硅片芯片上可以集成数千个晶体管,个人计算机的时代就此到来。


2、进程、线程、协程


2.1 python并发编程之多进程理论部分

2.1.1 什么是进程

进程:正在进行的一个过程或者说一个任务。而负责执行任务则是cpu。

举例(单核+多道,实现多个进程的并发执行):

egon在一个时间段内有很多任务要做:python备课的任务,写书的任务,交女朋友的任务,王者荣耀上分的任务,  但egon同一时刻只能做一个任务(cpu同一时间只能干一个活),如何才能玩出多个任务并发执行的效果?egon备一会课,再去跟李杰的女朋友聊聊天,再去打一会王者荣耀….这就保证了每个任务都在进行中.

2.1.2 进程与程序的区别

程序仅仅只是一堆代码而已,而进程指的是程序的运行过程。

举例:
想象一位有一手好厨艺的计算机科学家egon正在为他的女儿元昊烘制生日蛋糕。
他有做生日蛋糕的食谱,
厨房里有所需的原料:面粉、鸡蛋、韭菜,蒜泥等。

在这个比喻中:
做蛋糕的食谱就是程序(即用适当形式描述的算法)
计算机科学家就是处理器(cpu)
而做蛋糕的各种原料就是输入数据。
进程就是厨师阅读食谱、取来各种原料以及烘制蛋糕等一系列动作的总和。

现在假设计算机科学家egon的儿子alex哭着跑了进来,说:XXXXXXXXXXXXXX。

科学家egon想了想,处理儿子alex蛰伤的任务比给女儿元昊做蛋糕的任务更重要,于是

计算机科学家就记录下他照着食谱做到哪儿了(保存进程的当前状态),然后拿出一本急救手册,按照其中的指示处理蛰伤。这里,我们看到处理机从一个进程(做蛋糕)切换到另一个高优先级的进程(实施医疗救治),每个进程拥有各自的程序(食谱和急救手册)。当蜜蜂蛰伤处理完之后,这位计算机科学家又回来做蛋糕,从他离开时的那一步继续做下去。

需要强调的是:同一个程序执行两次,那也是两个进程,比如打开暴风影音,虽然都是同一个软件,但是一个可以播放苍井空,一个可以播放饭岛爱。

2.1.3 并发与并行

无论是并行还是并发,在用户看来都是’同时’运行的,不管是进程还是线程,都只是一个任务而已,真是干活的是cpu,cpu来做这些任务,而一个cpu同一时刻只能执行一个任务

一、并发:是伪并行,即看起来是同时运行。单个cpu+多道技术就可以实现并发,(并行也属于并发)

单CPU,多进程,并发,举例1

你是一个cpu,你同时谈了三个女朋友,每一个都可以是一个恋爱任务,你被这三个任务共享要玩出并发恋爱的效果,应该是你先跟女友1去看电影,看了一会说:不好,我要拉肚子,然后跑去跟第二个女友吃饭,吃了一会说:那啥,我去趟洗手间,然后跑去跟女友3开了个房

单CPU,多进程,并发,举例2

某天下午,egon,yuanhao,wupeiqi,alex约好了一起去嫖娼,但娼只有一个,cpu只有一个,但是却要‘同时’干
四个任务(嫖出并发的效果),那就必须是干一会egon,再干一会yuanhao,再干一会wupeiqi,再干一会alex
egon:花了200块钱,因为人美活好
yuanhao:500块钱
wupeiqi:100块钱,可能是不太行
alex:没要钱,为啥???因为大家刚刚嫖的是他女朋友

二、并行:同时运行,只有具备多个cpu才能实现并行
单核下,可以利用多道技术,多个核,每个核也都可以利用多道技术(多道技术是针对单核而言的)有四个核,六个任务,这样同一时间有四个任务被执行,假设分别被分配给了cpu1,cpu2,cpu3,cpu4,一旦任务1遇到I/O就被迫中断执行,此时任务5就拿到cpu1的时间片去执行,这就是单核下的多道技术而一旦任务1的I/O结束了,操作系统会重新调用它(需知进程的调度、分配给哪个cpu运行,由操作系统说了算),可能被分配给四个cpu中的任意一个去执行
网络编程与并发-线程、进程、协程_第4张图片

所有现代计算机经常会在同一时间做很多件事,一个用户的PC(无论是单cpu还是多cpu),都可以同时运行多个任务(一个任务可以理解为一个进程)。

  • 启动一个进程来杀毒(360软件)
  • 启动一个进程来看电影(暴风影音)
  • 启动一个进程来聊天(腾讯QQ)

所有的这些进程都需被管理,于是一个支持多进程的多道程序系统是至关重要的
多道技术概念回顾:内存中同时存入多道(多个)程序,cpu从一个进程快速切换到另外一个,使每个进程各自运行几十或几百毫秒,这样,虽然在某一个瞬间,一个cpu只能执行一个任务,但在1秒内,cpu却可以运行多个进程,这就给人产生了并行的错觉,即伪并发,以此来区分多处理器操作系统的真正硬件并行(多个cpu共享同一个物理内存)

2.1.4 ★同步\异步and阻塞\非阻塞

同步:

#所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不会返回。按照这个定义,其实绝大多数函数都是同步调用。但是一般而言,我们在说同步、异步的时候,特指那些需要其他部件协作或者需要一定时间完成的任务。
#举例:
#1. multiprocessing.Pool下的apply #发起同步调用后,就在原地等着任务结束,根本不考虑任务是在计算还是在io阻塞,总之就是一股脑地等任务结束
#2. concurrent.futures.ProcessPoolExecutor().submit(func,).result()
#3. concurrent.futures.ThreadPoolExecutor().submit(func,).result()

异步:

#异步的概念和同步相对。当一个异步功能调用发出后,调用者不能立刻得到结果。当该异步功能完成后,通过状态、通知或回调来通知调用者。如果异步功能用状态来通知,那么调用者就需要每隔一定时间检查一次,效率就很低(有些初学多线程编程的人,总喜欢用一个循环去检查某个变量的值,这其实是一 种很严重的错误)。如果是使用通知的方式,效率则很高,因为异步功能几乎不需要做额外的操作。至于回调函数,其实和通知没太多区别。
#举例:
#1. multiprocessing.Pool().apply_async() #发起异步调用后,并不会等待任务结束才返回,相反,会立即获取一个临时结果(并不是最终的结果,可能是封装好的一个对象)。
#2. concurrent.futures.ProcessPoolExecutor(3).submit(func,)
#3. concurrent.futures.ThreadPoolExecutor(3).submit(func,)

阻塞:

#阻塞调用是指调用结果返回之前,当前线程会被挂起(如遇到io操作)。函数只有在得到结果之后才会将阻塞的线程激活。有人也许会把阻塞调用和同步调用等同起来,实际上他是不同的。对于同步调用来说,很多时候当前线程还是激活的,只是从逻辑上当前函数没有返回而已。
#举例:
#1. 同步调用:apply一个累计1亿次的任务,该调用会一直等待,直到任务返回结果为止,但并未阻塞住(即便是被抢走cpu的执行权限,那也是处于就绪态);
#2. 阻塞调用:当socket工作在阻塞模式的时候,如果没有数据的情况下调用recv函数,则当前线程就会被挂起,直到有数据为止。

非阻塞:

#非阻塞和阻塞的概念相对应,指在不能立刻得到结果之前也会立刻返回,同时该函数不会阻塞当前线程。

小结:

  1. 同步与异步针对的是函数/任务的调用方式:同步就是当一个进程发起一个函数(任务)调用的时候,一直等到函数(任务)完成,而进程继续处于激活状态。而异步情况下是当一个进程发起一个函数(任务)调用的时候,不会等函数返回,而是继续往下执行当,函数返回的时候通过状态、通知、事件等方式通知进程任务完成。

  2. 阻塞与非阻塞针对的是进程或线程:阻塞是当请求不能满足的时候就将进程挂起,而非阻塞则不会阻塞当前进程

2.1.5 进程的创建(了解)

但凡是硬件,都需要有操作系统去管理,只要有操作系统,就有进程的概念,就需要有创建进程的方式,一些操作系统只为一个应用程序设计,比如微波炉中的控制器,一旦启动微波炉,所有的进程都已经存在。

而对于通用系统(跑很多应用程序),需要有系统运行过程中创建或撤销进程的能力,主要分为4中形式创建新的进程

  • 系统初始化(查看进程linux中用ps命令,windows中用任务管理器,前台进程负责与用户交互,后台运行的进程与用户无关,运行在后台并且只在需要时才唤醒的进程,称为守护进程,如电子邮件、web页面、新闻、打印)

  • 一个进程在运行过程中开启了子进程(如nginx开启多进程,os.fork,subprocess.Popen等)

  • 用户的交互式请求,而创建一个新进程(如用户双击暴风影音)

  • 一个批处理作业的初始化(只在大型机的批处理系统中应用)

无论哪一种,新进程的创建都是由一个已经存在的进程执行了一个用于创建进程的系统调用而创建的:

  • 在UNIX中该系统调用是:fork,fork会创建一个与父进程一模一样的副本,二者有相同的存储映像、同样的环境字符串和同样的打开文件(在shell解释器进程中,执行一个命令就会创建一个子进程)

  • 在windows中该系统调用是:CreateProcess,CreateProcess既处理进程的创建,也负责把正确的程序装入新进程。

     
    关于创建的子进程,UNIX和windows

  • 相同的是:进程创建后,父进程和子进程有各自不同的地址空间(多道技术要求物理层面实现进程之间内存的隔离),任何一个进程的在其地址空间中的修改都不会影响到另外一个进程。

  • 不同的是:在UNIX中,子进程的初始地址空间是父进程的一个副本,提示:子进程和父进程是可以有只读的共享内存区的。但是对于windows系统来说,从一开始父进程与子进程的地址空间就是不同的。

2.1.6 进程的终止(了解)

  1. 正常退出(自愿,如用户点击交互式页面的叉号,或程序执行完毕调用发起系统调用正常退出,在linux中用exit,在windows中用ExitProcess)

  2. 出错退出(自愿,python a.py中a.py不存在)

  3. 严重错误(非自愿,执行非法指令,如引用不存在的内存,1/0等,可以捕捉异常,try…except…)

  4. 被其他进程杀死(非自愿,如kill -9)

2.1.7 进程的层次结构

无论UNIX还是windows,进程只有一个父进程,不同的是:

  • 在UNIX中所有的进程,都是以init进程为根,组成树形结构。父子进程共同组成一个进程组,这样,当从键盘发出一个信号时,该信号被送给当前与键盘相关的进程组中的所有成员。

  • 在windows中,没有进程层次的概念,所有的进程都是地位相同的,唯一类似于进程层次的暗示,是在创建进程时,父进程得到一个特别的令牌(称为句柄),该句柄可以用来控制子进程,但是父进程有权把该句柄传给其他子进程,这样就没有层次了。

2.1.8 进程的状态

tail -f access.log |grep '404'

执行程序tail,开启一个子进程,执行程序grep,开启另外一个子进程,两个进程之间基于管道’|’通讯,将tail的结果作为grep的输入。

进程grep在等待输入(即I/O)时的状态称为阻塞,此时grep命令都无法运行其实在两种情况下会导致一个进程在逻辑上不能运行,

  • 进程挂起是自身原因,遇到I/O阻塞,便要让出CPU让其他进程去执行,这样保证CPU一直在工作

  • 与进程无关,是操作系统层面,可能会因为一个进程占用时间过多,或者优先级等原因,而调用其他的进程去使用CPU。

因而一个进程由三种状态
网络编程与并发-线程、进程、协程_第5张图片

2.1.9 进程并发的实现(了解)

进程并发的实现在于,硬件中断一个正在运行的进程,把此时进程运行的所有状态保存下来,为此,操作系统维护一张表格,即进程表(process table),每个进程占用一个进程表项(这些表项也称为进程控制块)
网络编程与并发-线程、进程、协程_第6张图片
 
该表存放了进程状态的重要信息:程序计数器、堆栈指针、内存分配状况、所有打开文件的状态、帐号和调度信息,以及其他在进程由运行态转为就绪态或阻塞态时,必须保存的信息,从而保证该进程在再次启动时,就像从未被中断过一样。


2.2 python并发编程之多线程理论部分

2.2.1 什么是线程

在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程

线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程

车间负责把资源整合到一起,是一个资源单位,而一个车间内至少有一个流水线

流水线的工作需要电源,电源就相当于cpu

所以,进程只是用来把资源集中到一起(进程只是一个资源单位,或者说资源集合),而线程才是cpu上的执行单位。

多线程(即多个控制线程)的概念是,在一个进程中存在多个控制线程,多个控制线程共享该进程的地址空间,相当于一个车间内有多条流水线,都共用一个车间的资源。

例如,北京地铁与上海地铁是不同的进程,而北京地铁里的13号线是一个线程,北京地铁所有的线路共享北京地铁所有的资源,比如所有的乘客可以被所有线路拉。

2.2.2 线程的创建开销小

创建进程的开销要远大于线程?

如果我们的软件是一个工厂,该工厂有多条流水线,流水线工作需要电源,电源只有一个即cpu(单核cpu)

一个车间就是一个进程,一个车间至少一条流水线(一个进程至少一个线程)

创建一个进程,就是创建一个车间(申请空间,在该空间内建至少一条流水线)

而建线程,就只是在一个车间内造一条流水线,无需申请空间,所以创建开销小

进程之间是竞争关系,线程之间是协作关系?

车间直接是竞争/抢电源的关系,竞争(不同的进程直接是竞争关系,是不同的程序员写的程序运行的,迅雷抢占其他进程的网速,360把其他进程当做病毒干死)
一个车间的不同流水线式协同工作的关系(同一个进程的线程之间是合作关系,是同一个程序写的程序内开启动,迅雷内的线程是合作关系,不会自己干自己)

2.2.3 线程与进程的区别

  • Threads share the address space of the process that created it; processes have their own address space.
  • Threads have direct access to the data segment of its process; processes have their own copy of the data segment of the parent process.
  • Threads can directly communicate with other threads of its process; processes must use interprocess communication to communicate with sibling processes.
  • New threads are easily created; new processes require duplication of the parent process.
  • Threads can exercise considerable control over threads of the same process; processes can only exercise control over child processes.
  • Changes to the main thread (cancellation, priority change, etc.) may affect the behavior of the other threads of the process; changes to the parent process does not affect child processes.

2.2.4 为何要用多线程

多线程指的是,在一个进程中开启多个线程,简单的讲:如果多个任务共用一块地址空间,那么必须在一个进程内开启多个线程。详细的讲分为4点:

  • 多线程共享一个进程的地址空间

  • 线程比进程更轻量级,线程比进程更容易创建可撤销,在许多操作系统中,创建一个线程比创建一个进程要快10-100倍,在有大量线程需要动态和快速修改时,这一特性很有用

  • 若多个线程都是cpu密集型的,那么并不能获得性能上的增强,但是如果存在大量的计算和大量的I/O处理,拥有多个线程允许这些活动彼此重叠运行,从而会加快程序执行的速度。

  • 在多cpu系统中,为了最大限度的利用多核,可以开启多个线程,比开进程开销要小的多。(这一条并不适用于python)

2.2.5 多线程的应用举例

网络编程与并发-线程、进程、协程_第7张图片

开启一个字处理软件进程,该进程肯定需要办不止一件事情,比如监听键盘输入,处理文字,定时自动将文字保存到硬盘,这三个任务操作的都是同一块数据,因而不能用多进程。只能在一个进程里并发地开启三个线程,如果是单线程,那就只能是,键盘输入时,不能处理文字和自动保存,自动保存时又不能输入和处理文字。

2.2.6 经典的线程模型(了解)

多个线程共享同一个进程的地址空间中的资源,是对一台计算机上多个进程的模拟,有时也称线程为轻量级的进程

而对一台计算机上多个进程,则共享物理内存、磁盘、打印机等其他物理资源。

多线程的运行也多进程的运行类似,是cpu在多个线程之间的快速切换。
网络编程与并发-线程、进程、协程_第8张图片

不同的进程之间是充满敌意的,彼此是抢占、竞争cpu的关系,如果迅雷会和QQ抢资源。而同一个进程是由一个程序员的程序创建,所以同一进程内的线程是合作关系,一个线程可以访问另外一个线程的内存地址,大家都是共享的,一个线程干死了另外一个线程的内存,那纯属程序员脑子有问题。

类似于进程,每个线程也有自己的堆栈

网络编程与并发-线程、进程、协程_第9张图片

不同于进程,线程库无法利用时钟中断强制线程让出CPU,可以调用thread_yield运行线程自动放弃cpu,让另外一个线程运行。

线程通常是有益的,但是带来了不小程序设计难度,线程的问题是:

  • 父进程有多个线程,那么开启的子线程是否需要同样多的线程

    • 如果是,那么附近中某个线程被阻塞,那么copy到子进程后,copy版的线程也要被阻塞吗,想一想nginx的多线程模式接收用户连接。
  • 在同一个进程中,如果一个线程关闭了问题,而另外一个线程正准备往该文件内写内容呢?

    • 如果一个线程注意到没有内存了,并开始分配更多的内存,在工作一半时,发生线程切换,新的线程也发现内存不够用了,又开始分配更多的内存,这样内存就被分配了多次,这些问题都是多线程编程的典型问题,需要仔细思考和设计。

2.2.7 POSIX线程(了解)

为了实现可移植的线程程序,IEEE在IEEE标准1003.1c中定义了线程标准,它定义的线程包叫Pthread。大部分UNIX系统都支持该标准,简单介绍如下:

网络编程与并发-线程、进程、协程_第10张图片

2.2.8 在用户空间实现的线程(了解)

线程的实现可以分为两类:用户级线程(User-Level Thread)和内核线线程(Kernel-Level Thread),后者又称为内核支持的线程或轻量级进程。在多线程操作系统中,各个系统的实现方式并不相同,在有的系统中实现了用户级线程,有的系统中实现了内核级线程。

用户级线程内核的切换由用户态程序自己控制内核切换,不需要内核干涉,少了进出内核态的消耗,但不能很好的利用多核Cpu,目前Linux pthread大体是这么做的。

网络编程与并发-线程、进程、协程_第11张图片

在用户空间模拟操作系统对进程的调度,来调用一个进程中的线程,每个进程中都会有一个运行时系统,用来调度线程。此时当该进程获取cpu时,进程内再调度出一个线程去执行,同一时刻只有一个线程执行。

2.2.9 在内核空间实现的线程(了解)

内核级线程:切换由内核控制,当线程进行切换的时候,由用户态转化为内核态。切换完毕要从内核态返回用户态;可以很好的利用smp,即利用多核cpu。windows线程就是这样的。

网络编程与并发-线程、进程、协程_第12张图片

2.2.10 用户级与内核级线程的对比(了解)

①以下是用户级线程和内核级线程的区别:

  • 内核支持线程是OS内核可感知的,而用户级线程是OS内核不可感知的。
  • 用户级线程的创建、撤消和调度不需要OS内核的支持,是在语言(如Java)这一级处理的;而内核支持线程的创建、撤消和调度都需OS内核提供支持,而且与进程的创建、撤消和调度大体是相同的。
  • 用户级线程执行系统调用指令时将导致其所属进程被中断,而内核支持线程执行系统调用指令时,只导致该线程被中断。
  • 在只有用户级线程的系统内,CPU调度还是以进程为单位,处于运行状态的进程中的多个线程,由用户程序控制线程的轮换运行;在有内核支持线程的系统内,CPU调度则以线程为单位,由OS的线程调度程序负责线程的调度。
  • 用户级线程的程序实体是运行在用户态下的程序,而内核支持线程的程序实体则是可以运行在任何状态下的程序。

②内核线程的优缺点:

优点:

  • 当有多个处理机时,一个进程的多个线程可以同时执行。

缺点:

  • 由内核进行调度。

③用户进程的优缺点:

优点:

  • 线程的调度不需要内核直接参与,控制简单。
  • 可以在不支持线程的操作系统中实现。
  • 创建和销毁线程、线程切换代价等线程管理的代价比内核线程少得多。
  • 允许每个进程定制自己的调度算法,线程管理比较灵活。
  • 线程能够利用的表空间和堆栈空间比内核级线程多。
  • 同一进程中只能同时有一个线程在运行,如果有一个线程使用了系统调用而阻塞,那么整个进程都会被挂起。另外,页面失效也会产生同样的问题。

缺点:

  • 资源调度按照进程进行,多个处理机下,同一个进程中的线程只能在同一个处理机下分时复用

2.2.11 混合实现(了解)

用户级与内核级的多路复用,内核同一调度内核线程,每个内核线程对应n个用户线程

网络编程与并发-线程、进程、协程_第13张图片


2.3 python并发编程之协程

2.3.1 引子

本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:

切换+保存状态

cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长

网络编程与并发-线程、进程、协程_第14张图片

ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态 

一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:

1、yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
2、send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换

单纯地切换反而会降低运行效率

#串行执行
import time
def consumer(res):
    '''任务1:接收数据,处理数据'''
    pass

def producer():
    '''任务2:生产数据'''
    res=[]
    for i in range(10000000):
        res.append(i)
    return res

start=time.time()
#串行执行
res=producer()
consumer(res)
stop=time.time()
print(stop-start) #1.5536692142486572



#基于yield并发执行
import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield

def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)

start=time.time()
#基于yield保存状态,实现两个任务直接来回切换,即并发的效果
#PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer()

stop=time.time()
print(stop-start) #2.0272178649902344

二:第一种情况的切换。在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。

yield并不能实现遇到io切换

import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield

def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)
        time.sleep(2)

start=time.time()
producer() #并发执行,但是任务producer遇到io就会阻塞住,并不会切到该线程内的其他任务去执行

stop=time.time()
print(stop-start)

对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。

协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:

1、可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。

2、作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换

2.3.2 协程介绍

协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

需要强调的是:

1、 python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
2、 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

对比操作系统控制线程的切换,用户在单线程内控制协程的切换

优点如下:

1、协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
2、单线程内就可以实现并发的效果,最大限度地利用cpu

缺点如下:

1、 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
2、 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

总结协程特点:
* 必须在只有一个单线程里实现并发
* 修改共享数据不需加锁
* 用户程序里自己保存多个控制流的上下文栈
* 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

2.3.3 Greenlet

如果我们在单个线程内有20个任务,要想实现在多个任务之间切换,使用yield生成器的方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换

#安装
pip3 install greenlet
from greenlet import greenlet

def eat(name):
    print('%s eat 1' %name)
    g2.switch('egon')
    print('%s eat 2' %name)
    g2.switch()
def play(name):
    print('%s play 1' %name)
    g1.switch()
    print('%s play 2' %name)

g1=greenlet(eat)
g2=greenlet(play)

g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要

单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

#顺序执行
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i

def f2():
    res=1
    for i in range(100000000):
        res*=i

start=time.time()
f1()
f2()
stop=time.time()
print('run time is %s' %(stop-start)) #10.985628366470337

#切换
from greenlet import greenlet
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i
        g2.switch()

def f2():
    res=1
    for i in range(100000000):
        res*=i
        g1.switch()

start=time.time()
g1=greenlet(f1)
g2=greenlet(f2)
g1.switch()
stop=time.time()
print('run time is %s' %(stop-start)) # 52.763017892837524

greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。

2.3.4 Gevent介绍

#安装
pip3 install gevent

Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

#用法
g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的

g2=gevent.spawn(func2)

g1.join() #等待g1结束

g2.join() #等待g2结束

#或者上述两步合作一步:gevent.joinall([g1,g2])

g1.value#拿到func1的返回值

遇到IO阻塞时会自动切换任务

import gevent
def eat(name):
    print('%s eat 1' %name)
    gevent.sleep(2)
    print('%s eat 2' %name)

def play(name):
    print('%s play 1' %name)
    gevent.sleep(1)
    print('%s play 2' %name)


g1=gevent.spawn(eat,'egon')
g2=gevent.spawn(play,name='egon')
g1.join()
g2.join()
#或者gevent.joinall([g1,g2])
print('主')

上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,
而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了
from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

from gevent import monkey;monkey.patch_all()

import gevent
import time
def eat():
    print('eat food 1')
    time.sleep(2)
    print('eat food 2')

def play():
    print('play 1')
    time.sleep(1)
    print('play 2')

g1=gevent.spawn(eat)
g2=gevent.spawn(play_phone)
gevent.joinall([g1,g2])
print('主')

我们可以用threading.current_thread().getName()来查看每个g1和g2,查看的结果为DummyThread-n,即假线程

2.3.5 Gevent之同步与异步

from gevent import spawn,joinall,monkey;monkey.patch_all()

import time
def task(pid):
    """
    Some non-deterministic task
    """
    time.sleep(0.5)
    print('Task %s done' % pid)


def synchronous():
    for i in range(10):
        task(i)

def asynchronous():
    g_l=[spawn(task,i) for i in range(10)]
    joinall(g_l)

if __name__ == '__main__':
    print('Synchronous:')
    synchronous()

    print('Asynchronous:')
    asynchronous()
#上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走。

2.3.6 Gevent之应用举例一

协程应用:爬虫

from gevent import monkey;monkey.patch_all()
import gevent
import requests
import time

def get_page(url):
    print('GET: %s' %url)
    response=requests.get(url)
    if response.status_code == 200:
        print('%d bytes received from %s' %(len(response.text),url))


start_time=time.time()
gevent.joinall([
    gevent.spawn(get_page,'https://www.python.org/'),
    gevent.spawn(get_page,'https://www.yahoo.com/'),
    gevent.spawn(get_page,'https://github.com/'),
])
stop_time=time.time()
print('run time is %s' %(stop_time-start_time))

2.3.7 Gevent之应用举例二

通过gevent实现单线程下的socket并发(from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞)

服务端

from gevent import monkey;monkey.patch_all()
from socket import *
import gevent

#如果不想用money.patch_all()打补丁,可以用gevent自带的socket
# from gevent import socket
# s=socket.socket()

def server(server_ip,port):
    s=socket(AF_INET,SOCK_STREAM)
    s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
    s.bind((server_ip,port))
    s.listen(5)
    while True:
        conn,addr=s.accept()
        gevent.spawn(talk,conn,addr)

def talk(conn,addr):
    try:
        while True:
            res=conn.recv(1024)
            print('client %s:%s msg: %s' %(addr[0],addr[1],res))
            conn.send(res.upper())
    except Exception as e:
        print(e)
    finally:
        conn.close()

if __name__ == '__main__':
    server('127.0.0.1',8080)

客户端

#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'

from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080))


while True:
    msg=input('>>: ').strip()
    if not msg:continue

    client.send(msg.encode('utf-8'))
    msg=client.recv(1024)
    print(msg.decode('utf-8'))

多线程并发多个客户端

from threading import Thread
from socket import *
import threading

def client(server_ip,port):
    c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了
    c.connect((server_ip,port))

    count=0
    while True:
        c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))
        msg=c.recv(1024)
        print(msg.decode('utf-8'))
        count+=1
if __name__ == '__main__':
    for i in range(500):
        t=Thread(target=client,args=('127.0.0.1',8080))
        t.start()

你可能感兴趣的:(网络编程与并发-线程、进程、协程)