- AI视觉觉醒:深度学习如何革新视频标注,释放数据潜力基于深度学习的视频自动标注系统
海棠AI实验室
AI理论探索与学术前沿人工智能深度学习音视频
目录引言:被忽视的视频数据金矿传统视频标注的困境:效率、成本与瓶颈深度学习:视频自动标注的破局之道深度学习视频自动标注系统架构系统架构图核心技术解析目标检测(ObjectDetection)行为识别(ActionRecognition)视频分割(VideoSegmentation)代码实践:基于YOLOv5的目标检测视频标注示例挑战与未来展望结语:AI赋能,释放视频数据的无限可能引言:被忽视的视频
- DeepSeek在地铁应急响应与处理中的具体实现方案,包括技术架构、功能实现和代码示例:
人工智能专属驿站
架构计算机视觉
以下是关于DeepSeek在地铁应急响应与处理中的具体实现方案,包括技术架构、功能实现和代码示例:1.事件检测与预警技术实现:视频监控与传感器数据融合:利用地铁站内的视频监控系统和传感器(如烟雾传感器、压力传感器)实时采集数据。通过深度学习算法(如目标检测和行为识别)对视频流进行分析,结合传感器数据,快速识别突发事件。自动警报触发:一旦检测到异常事件(如火灾、拥挤踩踏),系统立即通过预设的警报机制
- 计算机视觉国内外研究现状(综述)
埃菲尔铁塔_CV算法
计算机视觉
1.国内外研究进展1.2.1特征提取研究进展特征提取是图像处理的一个重要环节,是进行身份识别和行为识别的重要部分。近年来,针对不同特征的提取,国内外学者提出了许多特征提取算法,同样特征提取的效果大都不错。但是在复杂的猪舍环境中提取猪的特征还是比较困难的。下面针对几种目前常用的特征提取算法进行一些介绍。(1)传统的特征提取算法传统特征提取算法已经发展了很久,现阶段比较成熟,是深度学习算法出来之前研究
- 基于深度学习的行人摔倒检测识别系统 —— 使用YOLOv5实现行人摔倒检测
2025年数学建模美赛
深度学习YOLO人工智能yoloui
目录引言项目背景与目标1.1项目背景1.2项目目标系统设计与架构2.1系统功能概述2.2系统架构数据准备与处理3.1数据集选择与收集3.2数据标注3.3数据集划分YOLOv5模型训练与优化4.1YOLOv5配置文件4.2安装YOLOv5并开始训练4.3模型评估与优化摔倒行为识别与推理5.1加载模型进行推理5.2UI界面设计5.3实时检测总结未来展望引言行人摔倒检测(FallDetection)系统
- 打架检测系统:基于YOLOv5的实时人群打架行为识别
2025年数学建模美赛
YOLO深度学习ui计算机视觉视觉检测
1.引言打架检测,作为一个复杂且具有挑战性的任务,已经在多个领域展现出其巨大的应用潜力,尤其是在公共安全监控、安防摄像头、智能城市等应用场景中。通过深度学习技术,尤其是基于YOLOv5的目标检测,我们能够对实时视频流中的人群行为进行实时监控,并有效地检测和识别人群中的打架行为。本博客将详细介绍如何使用YOLOv5模型搭建一个打架检测系统,包含数据集准备、YOLOv5训练、UI界面设计以及优化和部署
- kinetics-skeleton格式行为数据提取方法
青年夏日科技工作者
python人工智能深度学习
用自建kinetics-skeleton行为识别数据集训练st-gcn网络流程记录,利用Lightweight-OpenPose生成kinetics-skeleton格式数据0.准备工作1.下载/裁剪视频2.利用OpenPose提取骨骼点数据,制作kinetics-skeleton数据集3.训练st-gcn网络4.用自己训练的st-gcn网络跑demo,并可视化0.准备工作首先就是把st-gcn网
- 行为识别的方法
人工智能专属驿站
深度学习
行为识别主要有以下几大类方法,每类方法各有特点及典型算法:传统方法特点:利用手工设计特征对行为进行表征,再用统计学习的分类方法进行识别。需一定专业知识设计特征,耗费人力物力,对复杂场景、遮挡等适应性差,但对简单背景、规则动作识别效果尚可。典型算法:时空关键点(Space-TimeInterestPoints):基于视频图像中的关键点在时空维度上的变化来提取动作特征,但可能忽略视频细节,泛化能力较弱
- 校园打架行为识别检测系统 YOLOv5
燧机科技SuiJi
YOLO人工智能python计算机视觉开发语言
校园打架行为识别检测系统基于python深度学习框架+边缘分析技术,校园打架行为识别检测系统自动对校园监控视频图像信息进行分析识别。校园打架行为识别检测系统利用学校监控对校园、广场等区域进行实时监测,当监测到有人打架斗殴时,系统立即抓拍存档语音提醒,并将打架行为回传给学校监控后台,提醒后台人员及时处理打架情况。在YOLO系列算法中,针对不同的数据集,都需要设定特定长宽的锚点框。在网络训练阶段,模型
- <数据集>考场行为识别数据集<目标检测>
深度学习lover
深度学习数据集目标检测人工智能计算机视觉pythonYOLO
数据集格式:VOC+YOLO格式图片数量:2192张标注数量(xml文件个数):2192标注数量(txt文件个数):2192标注类别数:2标注类别名称:['cheating','good']序号类别名称图片数框数1cheating128214412good10671261使用标注工具:labelImg标注规则:对类别进行画水平矩形框图片示例:标注示例:
- 邮件服务器管理软件,U-Mail 邮件服务器软件(邮件系统)
weixin_39730587
邮件服务器管理软件
U-Mail是安全高速的全功能电子邮件服务器系统,融合强大的功能与简易高效的管理为一体,提供最佳的企业级邮箱服务器系统解决方案。内嵌顶级杀毒引擎;基于行为识别和热点等专利技术的反垃圾过滤引擎;终身免费升级;纯WEB管理;提供一站式全程服务!◇全球收发保证!即使您服务器的IP在对方的垃圾邮件黑名单中,邮件照发不误。◇邮件监控、收发审核!企业管理层可以根据实际的需要进行相关监控审核条件的设定。◇业界最
- 关于学生课堂行为识别算法
NineDays66
算法行为识别深度学习学生行为分析考试分析
目前基于针对学校做了一款考生行为识别算法,算法可以在服务器部署,也可以在前端设备如Jetson、RK等边缘设备运行,目前算法已经投入使用,算法效果如下目前算法在2080Ti服务器运行效率是150帧每秒算法运行平台模型大小吞吐量张/秒PC-2080TI50M150ARM-RK3399PRO10M10行为类别划分如下:学生未到、存在空位学生双手放在桌子下学生左、右看学生传纸条学生举手学生爬桌子睡觉学生
- 物业服务企业做好专业化,才能多元化
王海波w
物业服务企业做好专业化,才能谈未来发展的多元化。根据质量管理体系的标准,其中人员标准和管理标准尤为重要,很多企业只是做了标准化的表面文章,一个想要做出成绩的物业服务企业,要绝对深层次挖掘标准化内涵。CIS形象识别系统行为识别,是企业人力资源管理标准化的具体体现。图片发自App物业服务企业员工行为规范,仪容仪表,自然大方得体,符合工作需要及安全规则。行为举止,姿态端正,工作中做到走路轻,说话清,操作
- 代理IP技术在云函数中的创新应用与拓展空间
小文没烦恼
服务器linux运维pythontcp/ip
目录前言一、代理IP技术的基本概念和原理二、云函数的基本原理和优势1.弹性伸缩2.省时省力3.按需计费三、代理IP技术在云函数中的创新应用1.反爬虫技术2.访问安全性和隐私保护3.地理定位和访问控制四、代理IP技术在云函数中的拓展空间1.代理IP池的管理和优化2.用户行为分析和行为识别3.安全审计和访问控制五、代码实例六、总结前言随着云计算技术的发展和普及,云函数作为一种基于事件驱动的计算模型,已
- 多只动物3D姿态估计与行为识别系统
tzc_fly
论文阅读笔记人工智能
动物社会行为的量化是动物科学研究的重要步骤。虽然现有的深度学习方法已经实现了对常见动物的精确姿态估计、识别和行为分类,但由于缺乏注释良好的数据集,其应用依然受到挑战。因此该研究展示了一个计算框架,即社会行为图谱(SBeA,SocialBehaviorAtlas),用于克服由有限数据集引起的问题。SBeA使用数量很少的labelledframes进行多个动物的3D姿态估计,实现后续的无标签识别。SB
- 第一周文献阅读报告
半个轮子工
论文阅读物联网
文献阅读报告泛读1.《毫米波与太赫兹技术》2.《基于物联网的智能养老系统》3.《基于空间聚类的FMCW雷达双人行为识别方法》4.《太赫兹应用分析和展望》5.《车载毫米波雷达应用研究》6.《基于压力传感器的跌倒检测系统研究》7.《基于隐马尔可夫模型的老年人跌倒行为检测方法研究望》8.《矿用卡车毫米波雷达防碰撞系统的研究与应用》9.《基于YOLO网络的人体跌倒检测方法》10.《基于多传感器融合的老人跌
- 打击欺诈活动:如何利用羊毛盾API保护用户与业务安全
API小百科_APISpace
前言随着互联网的不断发展,欺诈活动也日益猖獗。针对企业和用户的欺诈行为可能导致财务损失、声誉受损以及用户信任的丧失。为了保护用户与业务安全,反欺诈技术成为了企业不可或缺的防线之一。在这方面,羊毛盾API作为一种智能反欺诈工具,发挥着越来越重要的作用。反欺诈(羊毛盾)API的作用image.png如何保护用户安全?1.欺诈行为识别反欺诈(羊毛盾)API通过收集和分析大量的用户行为数据,建立了模型和算
- 人类行为动作数据集大合集
地理探险家
用于深度学习的数据集行为动作人类数据集图像深度学习
最近收集了一大波关于人类行为动作的数据集,主要包括:动作识别、行为识别、活动预测、动作行为分类等数据集。废话不多说,接下来就给大家介绍这些数据集!!1、用于自动视频编辑的视频Blooper数据集用于自动视频编辑的视频Blooper数据集数据说明:根据网上的消息,基本的视频编辑每分钟需要30分钟到一个小时。这就不鼓励用户制作周期性的内容。目前,自动视频编辑仅限于视频增强和简单的机制,如沉默或鼓掌检测
- YOLO+SlowFast+DeepSORT 简单实现视频行为识别
AAI机器之心
YOLO音视频云计算openstack大数据深度学习python
前段时间刷短视频看到过别人用摄像头自动化监控员工上班状态,比如标注员工是不是离开了工位,在位置上是不是摸鱼。虽然是段子,但是这个是可以用识别技术实现一下,于是我在网上找,知道发现了SlowFast,那么下面就用SlowFast简单测试一下视频的行为识别。工具简介YOLOYOLO是一个基于深度学习神经网络的对象识别和定位算法,前面我也用v5s训练了标注的扑克牌,实现了图片或视频中的点数识别,这里就跳
- AI:116-基于深度学习的视频行为识别与分析
一见已难忘
精通AI实战千例专栏合集人工智能深度学习音视频视频行为识别与分析
点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~你的技术旅程将在这里启航!从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。✨✨✨每一个案例都附带有在本地跑过的关键代码,详细讲解供大家学习,希望可以帮到大家。欢迎订阅支持,正在不断更新中~一.基于深度学习的视频行为识别与分析随着人工智能技术的迅猛发展,深度学习成为视频行为识别与分析领域的重要推动
- YOLO+SlowFast+DeepSORT 简单实现视频行为识别
北桥苏
YOLOpython人工智能
前言前段时间刷短视频看到过别人用摄像头自动化监控员工上班状态,比如标注员工是不是离开了工位,在位置上是不是摸鱼。虽然是段子,但是这个是可以用识别技术实现一下,于是我在网上找,知道发现了SlowFast,那么下面就用SlowFast简单测试一下视频的行为识别。工具简介YOLOYOLO是一个基于深度学习神经网络的对象识别和定位算法,前面我也用v5s训练了标注的扑克牌,实现了图片或视频中的点数识别,这里
- 基于轻量级神经网络GhostNet开发构建光伏太阳能电池缺陷图像识别分析系统
Together_CZ
神经网络人工智能深度学习
工作中经常会使用到轻量级的网络模型来进行开发,所以平时也会常常留意使用和记录,在前面的博文中有过很多相关的实践工作,感兴趣的话可以自行移步阅读即可。《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类
- 基于轻量级GhostNet模型开发构建工业生产制造场景下滚珠丝杠传动表面缺陷图像识别系统
Together_CZ
制造
轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读:《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》《基于轻量级卷积神经网络模型实践Fruits360果蔬识别
- 基于轻量级GhostNet模型开发构建生活场景下生活垃圾图像识别系统
Together_CZ
制造
轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读:《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》《基于轻量级卷积神经网络模型实践Fruits360果蔬识别
- 计算机视觉 全教程目录
机器学习杨卓越
计算机视觉人工智能
1、OpenCV图像处理框架实战系列总目录OpenCV图像处理框架实战系列总目录2、现代卷积网络实战系列总目录现代卷积网络实战系列总目录3、YOLO物体检测系列教程总目录YOLO物体检测系列教程总目录4、图像分割实战-系列教程总目录图像分割实战-系列教程总目录5、MMLAB计算机视觉框架实战-系列教程总目录MMLAB计算机视觉框架实战-系列教程总目录6、行为识别实战-系列教程总目录行为识别实战-系
- 初识智慧城市
Mr.Cssust
未来发展智慧城市人工智能
文章目录智慧家居智慧社区智慧交通智慧医疗智慧教育智慧旅游智慧农业智慧安防智慧家居利用智能语音、智能交互等技术,实现用户对家居系统各设备的远程操控和能控制如开关窗帘(窗户)、操控家用电器和照明系统、打扫卫生等操作。利用计算机视觉等技术,对被照看人员如老人、小孩、残障人土等进行行为识别,对危险行为进行预警。智慧社区利用智能识别技术对进出小区人员和车辆进行智能识别,包括身份验证、危险人员和车辆预警等:对
- 作业-对汽车行业偷税漏税的数据探索-spss
亲爱的十一熊猫
对汽车销售行业纳税人的各个属性指标进行分析,总结衡量纳税人的经营特征,建立偷漏税行为识别模型,识别偷漏税纳税人。数据来源于网络,该数据集提供了汽车销售行业纳税人的各个属性与是否判断为偷漏税标识,该数据不存在缺失值。原始数据的汽车销售平均毛利、维修毛利、企业维修收入占销售收入比重、增值税税负、存货周转率、成本费用利润率、整体理论税负、整体税负控制数、办牌率、单台办牌手续费收入、代办保险率、保费返还率
- 新型智慧视频监控系统:基于TSINGSEE青犀边缘计算AI视频识别技术的应用
TSINGSEE
AI智能解决方案人工智能边缘计算
边缘计算AI智能识别技术在视频监控领域的应用有很多。这项技术结合了边缘计算和人工智能技术,通过在摄像头或网关设备上运行AI算法,可以在现场实时处理和分析视频数据,从而实现智能识别和分析。目前来说,边缘计算AI视频智能技术可以实现以下几类智能识别。1、行为识别:利用边缘设备(TSINGSEE智能分析网关)搭载的深度学习算法,对监控画面中的人员行为进行识别和分析。比如,TSINGSEE智能分析网关内置
- 新型智慧视频监控系统:基于TSINGSEE青犀边缘计算AI视频识别技术的应用
Black蜡笔小新
解决方案EasyCVRAI识别人工智能边缘计算
边缘计算AI智能识别技术在视频监控领域的应用有很多。这项技术结合了边缘计算和人工智能技术,通过在摄像头或网关设备上运行AI算法,可以在现场实时处理和分析视频数据,从而实现智能识别和分析。目前来说,边缘计算AI视频智能技术可以实现以下几类智能识别。1、行为识别:利用边缘设备(TSINGSEE智能分析网关)搭载的深度学习算法,对监控画面中的人员行为进行识别和分析。比如,TSINGSEE智能分析网关内置
- 顶刊TPAMI 2022!基于不同数据模态的行为识别:最新综述
Amusi(CVer)
计算机视觉机器学习人工智能深度学习大数据
点击下方卡片,关注“CVer”公众号AI/CV重磅干货,第一时间送达点击进入—>CV微信技术交流群HumanActionRecognitionfromVariousDataModalities:AReview论文:https://arxiv.org/abs/2012.118661.介绍人类行为识别旨在了解人类的行为,并为行为指定标签,例如,握手、吃东西、跑步等。它具有广泛的应用前景,因此在计算机视
- 【行动识别】基于LSTM实现视频分类附matlab代码
机器学习之星主
lstmmatlab人工智能rnn深度学习
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab仿真内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机⛄内容介绍笔者对行为识别技术的发展过程进行研究的基础上,深入分析了基于LSTM的视频行为识别技术的特点和实现方法,并针对视频语义中对时间
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe