Tensorflow MINIST数据模型的训练,使用

在查看本篇文章前,请提前阅读上一章Tensorflow开发环境的搭建

TensorFlow环境搭建

在PyChrem新建项目,并创建python package : com.test

在根目录下创建 train.py 文件

# coding=utf-8
# 载入MINIST数据需要的库
from tensorflow.examples.tutorials.mnist import input_data
# 保存模型需要的库
from tensorflow.python.framework.graph_util import convert_variables_to_constants
from tensorflow.python.framework import graph_util
# 导入其他库
import tensorflow as tf
import cv2
import numpy as np

# 获取MINIST数据
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
# 创建会话
sess = tf.InteractiveSession()

# 占位符
x = tf.placeholder("float", shape=[None, 784], name="Mul")
y_ = tf.placeholder("float", shape=[None, 10], name="y_")
# 变量
W = tf.Variable(tf.zeros([784, 10]), name='x')
b = tf.Variable(tf.zeros([10]), 'y_')


#用于将自定义输入图片反转
def reversePic(src):
        # 图像反转
    for i in range(src.shape[0]):
        for j in range(src.shape[1]):
            src[i,j] = 255 - src[i,j]
    return src


# 权重
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


# 偏差
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


# 卷积
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


# 最大池化
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                          strides=[1, 2, 2, 1], padding='SAME')


# 相关变量的创建
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
# 激活函数
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder("float", name='rob')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 用于训练用的softmax函数
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2, name='res')
# 用于训练作完后,作测试用的softmax函数
y_conv2 = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2, name="final_result")

# 交叉熵的计算,返回包含了损失值的Tensor。

cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# 优化器,负责最小化交叉熵
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
# 计算准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# 初始化所以变量
sess.run(tf.global_variables_initializer())

# 保存输入输出,可以为之后用
tf.add_to_collection('res', y_conv)
tf.add_to_collection('output', y_conv2)
tf.add_to_collection('x', x)

# 训练开始
for i in range(20000):
    batch = mnist.train.next_batch(50)# 每一步迭代加载50个训练样本,然后执行一次train_step
    if i % 100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x: batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g" % (i, train_accuracy))
    # run()可以看做输入相关值给到函数中的占位符,然后计算的出结果,这里将batch[0],给xbatch[1]给y_
    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

# 将当前图设置为默认图
graph_def = tf.get_default_graph().as_graph_def()
# 将上面的变量转化成常量,保存模型为pb模型时需要,注意这里的final_result和前面的y_con2是同名,只有这样才会保存它,否则会报错,
# 如果需要保存其他tensor只需要让tensor的名字和这里保持一直即可
output_graph_def = tf.graph_util.convert_variables_to_constants(sess,
                                                                graph_def, ['final_result'])
# 保存前面训练后的模型为pb文件
with tf.gfile.GFile("grf.pb", 'wb') as f:
    f.write(output_graph_def.SerializeToString())

# 用saver 保存模型
saver = tf.train.Saver()
saver.save(sess, "model_data/model")

print("test accracy %g" % accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

然后鼠标右键,选择run运行即可,训练时间较长,大概需要1-2小时左右,和实际的电脑配置有关

在运行时,会自动下载训练模型,下载的文件保存在MNIST_data文件夹中

接下来我们使用一张图片进行测试,编写模型恢复脚本 test.py

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import numpy as np
import os
from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file
import cv2

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

#用于将自定义输入图片反转
def reversePic(src):
        # 图像反转
    for i in range(src.shape[0]):
        for j in range(src.shape[1]):
            src[i,j] = 255 - src[i,j]
    return src



# pb模型的恢复
def restore_model_pb():
    sess = tf.Session()
    tf.saved_model.loader.load(sess, ['mytag'], os.getcwd() + '\model2')
    input_x = sess.graph.get_tensor_by_name('input_x:0')
    op = sess.graph.get_tensor_by_name('predict:0')
    print(sess.run(op, feed_dict={input_x: np.expand_dims(mnist.test.images[15], axis=0)}))
    sess.close()


# ckpt模型的恢复
def restore_model_ckpt():
    sess = tf.Session()
    # 加载模型结构
    saver = tf.train.import_meta_graph('model_data/model.meta')
    # 只需要指定目录就可以恢复所有变量信息
    saver.restore(sess, tf.train.latest_checkpoint('model_data'))
    # 直接获取保存的变量
    print(sess.run('x:0'))

    input_x = sess.graph.get_tensor_by_name('Mul:0')
    # # 获取需要进行计算的operator
    op = sess.graph.get_tensor_by_name('final_result:0')

    # 导入图片,同时灰度化
    im = cv2.imread('pic/e2.jpg', cv2.IMREAD_GRAYSCALE)
    # 反转图像,因为e2.jpg为白底黑字
    im = reversePic(im)
    #cv2.namedWindow("camera", cv2.WINDOW_NORMAL);
    #cv2.imshow('camera', im)
    #cv2.waitKey(0)

    # 调整大小
    im = cv2.resize(im, (28, 28), interpolation=cv2.INTER_CUBIC)
    x_img = np.reshape(im, [-1, 784])

    # 用上面导入的图片对模型进行测试
    output = sess.run(op, feed_dict={input_x: x_img})
    # print 'the y_con :   ', '\n',output
    print('the predict is : ', np.argmax(output))


    #print(sess.run(op, feed_dict={input_x: np.expand_dims(mnist.test.images[15], axis=0)}))
    sess.close()


#restore_model_pb()
restore_model_ckpt()

直接运行即可

其中有使用到e2.jpg图片,和训练好的模型,我都已经打包上传,项目源代码下载:

Tensorflow MINIST数据模型源码

 

你可能感兴趣的:(tensorflow)