- 使用LLaVa和Ollama实现多模态RAG示例
llzwxh888
python人工智能开发语言
本文将详细介绍如何使用LLaVa和Ollama实现多模态RAG(检索增强生成),通过提取图像中的结构化数据、生成图像字幕等功能来展示这一技术的强大之处。安装环境首先,您需要安装以下依赖包:!pipinstallllama-index-multi-modal-llms-ollama!pipinstallllama-index-readers-file!pipinstallunstructured!p
- Vicky的ScalersTalk第六轮新概念朗读持续力训练Day73 20210411
Vicky_b9de
练习材料:ModerncavemenPart-3ˈmɒdənˈkeɪvmənpɑːt-3Theyplungedintothelake,andafterloadingtheirgearonaninflatablerubberdinghy,letthecurrentcarrythemtotheotherside.Toprotectthemselvesfromtheicywater,theyhadtow
- 如何给QQ邮箱自动发邮件?无惧「小爱」下线!代码全公开,两步搞定
AI码上来
AI实战微信人工智能python
前两天,搞了个微信AI小助理-小爱(AI),爸妈玩的不亦乐乎。零风险!零费用!我把AI接入微信群,爸妈玩嗨了,附教程(下)最近一直在迭代中,挖掘小爱的无限潜力:链接丢给它,精华吐出来!微信AI小助理太强了,附完整提示词拥有一个能倾听你心声的「微信AI小助理」,是一种什么体验?小爱打工,你躺平!让「微信AI小助理」接管你的文件处理,一个字:爽!我把多模态大模型接入了「小爱」,痛快来一场「表情包斗图」
- 腾讯发表多模态综述,一文详解多模态大模型
存内计算开发者社区
多模态大模型人工智能chatgptAIGC量子计算AI-nativegptagi
多模态大语言模型(MLLM)是近年来兴起的一个新的研究热点,它利用强大的大语言模型作为大脑来执行多模态任务。MLLM令人惊讶的新兴能力,如基于图像写故事和无OCR的数学推理,在传统方法中是罕见的,这表明了一条通往人工通用智能的潜在道路。在本文中,追踪多模态大模型最新热点,讨论多模态关键技术以及现有在情绪识别上的应用。腾讯AILab发表了一篇关于多模态大模型的最新综述《MM-LLMs:RecentA
- Github 2024-09-12 Go开源项目日报Top10
老孙正经胡说
githubgolang开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,今日(2024-09-12统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量Go项目10C项目1Terraform:基础设施即代码的开源工具创建周期:3626天开发语言:Go协议类型:OtherStar数量:40393个Fork数量:9397次关注人数:40393人贡献人数:358人OpenIssues数量:1943个Git
- 随摘
桔桔岛
Oneshouldcaremoreaboutone'sowngrowthinsteadofothers.Toliveahappylife,oneshouldalwaystryeveryefforttominimizeregretsinlife.比起时刻注视着他人,多关注自身的成长,尽自己的一切努力让生活少点遗憾,才能过上快意人生。Whenoneshiftstheirfocusfromotherst
- 基于深度学习的文本引导的图像编辑
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的文本引导的图像编辑(Text-GuidedImageEditing)是一种通过自然语言文本指令对图像进行编辑或修改的技术。它结合了图像生成和自然语言处理(NLP)的最新进展,使用户能够通过描述性文本对图像内容进行精确的调整和操控。1.文本引导的图像编辑的挑战文本和图像之间的对齐:如何将文本中的语义信息准确地映射到图像中的特定区域或元素是一个关键挑战。这涉及到多模态数据的对齐和理解。编
- 多模态Transformer之文本与图像联合建模 - Transformer教程
shandianfk_com
ChatGPTTransformertransformer深度学习人工智能
大家好,今天我们来聊聊一个既前沿又有趣的话题——多模态Transformer,特别是文本与图像的联合建模。对于很多小伙伴来说,Transformer这个词已经不陌生了,但它不仅仅应用于自然语言处理,还能在图像处理、甚至是多模态数据的处理上大显身手。接下来,我会带大家深入了解什么是多模态Transformer,以及它是如何实现文本与图像的联合建模的。Transformer简介首先,我们简单回顾一下T
- 【人工智能】多模态AI:如何通过融合文本、图像与音频重塑智能系统未来
2的n次方_
小水文人工智能图像处理
我的主页:2的n次方_随着人工智能技术的飞速发展,多模态AI逐渐成为构建智能系统的重要方向。传统的AI系统通常依赖于单一模态的数据,如文本、图像或音频。而多模态AI通过结合多种数据类型,能够在更复杂的场景下提供更智能的解决方案。本文将深入探讨多模态AI的原理、应用场景及其未来发展,并通过代码示例展示如何构建一个多模态AI系统。1.多模态AI的基本原理多模态AI的核心在于融合来自不同模态(如文本、图
- 多模态大模型微调Qwen-VL微调及日志
Messi^
人工智能-大模型应用python人工智能深度学习
%pipinstallmodelscope-U%pipinstalltransformersacceleratetiktoken-U%pipinstalleinopstransformers_stream_generator-U%pipinstallpillow-U%pipinstalltorchvision%pipinstallmatplotlib-Ufrommodelscopeimport(s
- 基于深度学习的多模态信息检索
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的多模态信息检索(MultimodalInformationRetrieval,MMIR)是指利用深度学习技术,从包含多种模态(如文本、图像、视频、音频等)的数据集中检索出满足用户查询意图的相关信息。这种方法不仅可以处理单一模态的数据,还可以在多种模态之间建立关联,从而更准确地满足用户需求。1.多模态信息检索的挑战异构数据表示:多模态数据通常具有不同的特征和表示形式(如文本的词嵌入与图
- [AI资讯·0605] GLM-4系列开源模型,OpenAI安全疑云,ARM推出终端计算子系统,猿辅导大模型备案……
老牛同学
AI人工智能ai大模型AI资讯
AI资讯1毛钱1百万token,写2遍红楼梦!国产大模型下一步还想卷什么?AI「末日」突然来临,公司同事集体变蠢!只因四大聊天机器人同时宕机OpenAI员工们开始反抗了!AI手机PC大爆发,Arm从软硬件到生态发力,打造行业AI百宝箱GLM-4开源版本:超越Llama3,多模态比肩GPT4V,MaaS平台也大升级猿辅导竟然是一家AI公司?大模型全家桶曝光|甲子光年FineChatBI,帆软在AI方
- 文本生成图像工作简述1--概念介绍和技术梳理
尹凯
姓名:尹凯学号:22011210590学院:通信工程学院原文链接:https://blog.csdn.net/air__Heaven/article/details/127302735【嵌牛导读】文本生成图像的概念介绍与技术梳理【嵌牛鼻子】文本生成图像基于深度学习的机器学习方法已经在语音、文本、图像等单一模态领域取得了巨大的成功,而同时涉及到多种输入模态的多模态机器学习研究有巨大的应用前景和广泛的
- 多模态大语言模型(MLLMs)-一般架构(非常详细)零基础入门到精通,收藏这一篇就够了
程序员_大白
语言模型人工智能自然语言处理
多模态大语言模型(MultimodalLargeLanguageModel,MLLM),在LLM原有的强大泛化和推理能力基础上,进一步引入了多模态信息处理能力。相比于以往的多模态方法,例如以CLIP为代表的判别式,或以OFA为代表的生成式,新兴的MLLM展现出一些典型的特质,在下面这两种特质的加持下,MLLM涌现出一些以往多模态模型所不具备的能力!模型大。MLLM通常具有数十亿的参数量,更多的参数
- 大规模语言模型从理论到实践 vLLM推理框架实践
AGI通用人工智能之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践:vLLM推理框架实践1.背景介绍1.1问题的由来随着大规模语言模型(LargeLanguageModels,vLLMs)的发展,从简单的语言生成到复杂的多模态任务,这些模型的能力得到了显著提升。然而,如何高效地利用这些模型进行推理成为了新的挑战。传统的方法往往受限于模型的输入长度、计算资源的限制以及缺乏有效的任务分解策略。为了解决这些问题,vLLM推理框架应运而生,旨在
- 大模型中的多模态概念指的是什么
张3蜂
计算机视觉人工智能深度学习
大模型中的多模态(Multimodal)概念是指模型能够同时处理和理解来自多种类型的数据或信息模式(modalities),如文本、图像、音频、视频等。这种模型不仅可以从单一模态(如仅文本或仅图像)中学习,还能够结合多种模态的数据,从而增强模型的理解能力和表现。以下是一些与多模态相关的核心概念:模态(Modalities):指的是数据的不同形式或类型。常见的模态包括:文本(Text):自然语言文本
- 百行代码复现扩散模型-基于线性回归
李新然
数据统计分析深度学习线性回归算法回归python数据分析
文章目录引言简化模型原本模型模型改造实现过程数据集文本编码图像编码解码扩散过程训练过程生成过程完整实现结论引言多模态的深度学习模型,通常需要大量的算力去训练和验证。这导致缺乏算力的普通读者,阅读“大模型”论文,只能按论文作者所写来构造自己的认知。可能对很多类似笔者的人来说:纸上得来终觉浅。或许我们可以退而求其次,只选择Follow论文的思路。本文以DiffusionModel为例,说明从核心思想来
- Go学习笔记
南方淮竹
golanggolang学习笔记常识后端开发语言人工智能
Go环境变量GOROOT:Go语言安装根目录的路径。GOPATH:若干工作区目录的路径,我们自己定义的工作空间。GOBIN:GO程序生成的可执行文件(executablefile)的路径。国内镜像https://goproxy.cn#macOSorLinuxexportGO111MODULE=onexportGOPROXY=https://goproxy.cn#othersgoenv-wGO111
- Linux文件权限管理
不屈的铝合金
边学边记-linuxlinux服务器运维centos
1.文件权限位说明Linux文件或目录的基本权限位是由九个字符来控制的,每三位字符为一组。前三位是用户权限位中三位表示用户组权限位后三位表示其他用户权限位rwxr-xr-xuser(用户)group(用户组)others(其他用户)代表字符为u代表字符为g代表字符为o2.文件权限详细说明2.1普通文件对应权限的详细说明Linux系统中的权限对于文件和目录来说,是有一定区别的。普通文件对应的权限:权
- HAN!!!!
卑微小鹿
神经网络
1.基本概念1.1异构图异构图是指不止有一种类型的节点或者边,因此允许不同类型的边或者节点拥有不同维度的特征或者属性。例如作者在论文中列举的IMDB数据(图1),节点的类型包含演员,电影和导演,假如两部电影均由同一个演员参演完成,则可以建立一条电影-演员-电影(MAM)的meta-path或者由同一个导演执导完成,则meta-path的类型为电影-导演-电影(MDM)。source~/.bashr
- 新技术前沿-2024-国内主流AI大模型架构及应用场景深度分析
皮皮冰燃
新技术前沿人工智能
参考国内主流AI大模型架构及应用场景深度分析20241厂商总览1.1国外(1)OpenAI:GPT-4【美国旧金山的人工智能研究公司】GPT-4于2023年3月14日发布,是千亿级参数的多模态预训练模型,能够支持图像和文本的输入。(2)Anthropic(人类的):Claude【美国人工智能初创公司】Claude于2023年3月14日发布,是Anthropic开发的类似ChatGPT的聊天机器人,
- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.07.25-2024.08.01
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理VLM大语言模型计算机视觉视觉语言模型
文章目录~1.PayingMoreAttentiontoImage:ATraining-FreeMethodforAlleviatingHallucinationinLVLMs2.MTA-CLIP:Language-GuidedSemanticSegmentationwithMask-TextAlignment3.MarvelOVD:MarryingObjectRecognitionandVisi
- 咸汤面的回忆
c50f145ef40d
其实咸(han)汤面要一大早去吃,面筋汤浓辣子香,豆腐嫩。如果前一晚喝了酒,早起一碗咸汤面,那别提有多滋润了。当年上学时,和一起的一个哥们总是早起争着吃学校门口的第一碗面。寒冷的冬日,天色不亮,总会在昏暗的街灯里看到两个年少的身影,或前或后的相互推搡着,嬉笑着,奔跑起来,呐喊着甩一甩背上的书包,从昏暗的灯影里冲到一家面馆的灶台前,争先恐后的摸出五角毛币递给烫面师傅的同时嚷嚷着:我先来的,我第一碗,
- 【Python】成功解决IndexError: list index out of range
高斯小哥
BUG解决方案合集pythonlist新手入门学习debug
【Python】成功解决IndexError:listindexoutofrange下滑查看解决方法欢迎莅临我的个人主页这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地!博主简介:985高校的普通本硕,曾有幸发表过人工智能领域的中科院顶刊一作论文,熟练掌握PyTorch框架。技术专长:在CV、NLP及多模态等领域有丰富的项目实战经验。已累计一对一为数百位用户提供近千次专业服务,助力他们少走
- 多模态大模型论文总结
sudun_03
语言模型算法人工智能
MM1:Methods,Analysis&InsightsfromMultimodalLLMPre-training在这项工作中,我们讨论了建立高性能的多模态大型语言模型(MLLMs)。特别是,我们研究了各种模型结构组件和数据选择的重要性。通过对图像编码器、视觉语言连接器和各种预训练数据选择的仔细而全面的验证,我们确定了几个关键的设计教训。例如,我们证明,与其他已发表的多模式预训练结果相比,对于使
- 大语言模型为什么这么强?关键步骤是……
青花科技
语言模型人工智能自然语言处理
作者主页:青花锁简介:Java领域优质创作者、Java微服务架构公号作者简历模板、学习资料、面试题库、技术互助文末获取联系方式目录前言什么是大模型1.1、具备涌现能力1.2、多模态能力增强2、预训练往期热门专栏回顾前言研究人员发现,随着语言模型参数量的不断增加,模型完成各个任务的效果也得到不同程度的提升。什么是大模型大语言模型是指模型参数量超过一定规模的语言模型,相比参数量较小的预训练模型(如BE
- 【专题】2024年中国AI人工智能基础数据服务研究报告合集PDF分享(附原数据表)
拓端研究室
人工智能
原文链接:https://tecdat.cn/?p=37516随着人工智能技术的迅猛发展,AI基础数据服务行业迎来了前所未有的发展机遇。报告合集显示,2023年中国AI基础数据服务市场规模达到45亿元,且未来五年复合增长率有望达到30.4%。多模态大模型、长文本处理能力提升以及大模型小型化技术成为AI领域热点研究方向,从而推动了对高质量数据的大量需求。阅读原文,获取专题报告合集全文,解锁文末403
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- 多模态视野:探索Qwen-VL的70亿参数世界
努力犯错
人工智能计算机视觉深度学习gpt-3语言模型
引言在人工智能的迅猛发展中,多模态大模型成为了新的研究热点。阿里云推出的Qwen-VL模型,就是在这一领域的重要突破。作为一款基于70亿参数的通义千问模型Qwen-7B开发的多模态视觉语言模型,Qwen-VL不仅在技术上实现了创新,更在多模态任务评测中展现出卓越的性能。官网demo技术特点Qwen-VL模型的核心在于其多模态理解能力。它能够同时处理图像和文本信息,实现更加全面和深入的数据解析。这一
- 当NAS遭遇鲁棒性:寻找对抗攻击的坚固架构
甄如冰Lea
当NAS遭遇鲁棒性:寻找对抗攻击的坚固架构RobNets项目地址:https://gitcode.com/gh_mirrors/ro/RobNets在当今深度学习的浪潮中,模型的安全性和鲁棒性日益成为研究的热点。本文将为您揭开一款开源项目——《当NAS遇见鲁棒性:对抗攻击下可搜索的鲁棒架构》的神秘面纱。该项目源自CVPR2020的一篇论文,并提供了详细的实现代码和实验指南,致力于探索在网络架构设计
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><