- 神经网络-损失函数
红米煮粥
神经网络人工智能深度学习
文章目录一、回归问题的损失函数1.均方误差(MeanSquaredError,MSE)2.平均绝对误差(MeanAbsoluteError,MAE)二、分类问题的损失函数1.0-1损失函数(Zero-OneLossFunction)2.交叉熵损失(Cross-EntropyLoss)3.合页损失(HingeLoss)三、总结在神经网络中,损失函数(LossFunction)扮演着至关重要的角色,它
- 损失函数与反向传播
Star_.
PyTorchpytorch深度学习python
损失函数定义与作用损失函数(lossfunction)在深度学习领域是用来计算搭建模型预测的输出值和真实值之间的误差。1.损失函数越小越好2.计算实际输出与目标之间的差距3.为更新输出提供依据(反向传播)常见的损失函数回归常见的损失函数有:均方差(MeanSquaredError,MSE)、平均绝对误差(MeanAbsoluteErrorLoss,MAE)、HuberLoss是一种将MSE与MAE
- Google大数据架构技术栈
剑海风云
BigData大数据架构GoogleBigData
数据存储层ColossusColossus作为Google下一代GFS(GoogleFileSystem)。GFS本身存在一些不足单主瓶颈GFS依赖单个主节点进行元数据管理,随着数据量和访问请求的增长,出现了可扩展性瓶颈。想象一下,只有一位图书管理员管理着一个庞大的图书馆——最终,事情变得难以承受。元数据可扩展性有限主节点上的集中元数据存储无法有效扩展,影响了性能并妨碍了PB和EB级数据的管理。实
- Python中item()和items()的用处
~|Bernard|
深度学习疑点总结pythonpytorch深度学习
item()区别一:在pytorch训练时,一般用到.item()。比如loss.item()。我们可以做个简单测试代码看看它的区别:importtorchx=torch.randn(2,2)print(x)print(x[1,1])print(x[1,1].item())运行结果:tensor([[-2.0743,0.1675],[0.7016,-0.6779]])tensor(-0.6779)
- 如何使用Pytorch-Metric-Learning?
鱼儿也有烦恼
PyTorchpytorch
文章目录如何使用Pytorch-Metric-Learning?1.Pytorch-Metric-Learning库9个模块的功能1.1Sampler模块1.2Miner模块1.3Loss模块1.4Reducer模块1.5Distance模块1.6Regularizer模块1.7Trainer模块1.8Tester模块1.9Utils模块2.如何使用PyTorchMetricLearning库中的
- 基于图的推荐算法(12):Handling Information Loss of Graph Neural Networks for Session-based Recommendation
阿瑟_TJRS
前言KDD2020,针对基于会话推荐任务提出的GNN方法对已有的GNN方法的缺陷进行分析并做出改进主要针对lossysessionencoding和ineffectivelong-rangedependencycapturing两个问题:基于GNN的方法存在损失部分序列信息的问题,主要是在session转换为图以及消息传播过程中的排列无关(permutation-invariant)的聚合过程中造
- AttributeError: ‘tuple‘ object has no attribute ‘shape‘
晓胡同学
keras深度学习tensorflow
AttributeError:‘tuple’objecthasnoattribute‘shape’在将keras代码改为tensorflow2代码的时候报了如下错误AttributeError:'tuple'objecthasnoattribute'shape'经过调查发现,损失函数写错了原来的是这样model.compile(loss=['binary_crossentropy'],optimi
- recover device type disk copy of database 还不会用!!!!
jnrjian
数据库oracle
ImplementingaDualBackupStrategywithBackupstoDiskandRecoveryAppliance(DocID2154461.1)RMAN-HowtoimplementDualBackupstrategy(DocID3003000.1)ZeroDataLossRecoveryApplianceSoftware-Version12.1.0.1.0andlater
- torch.nn中的22种loss函数简述
01_6
人工智能机器学习
loss.py中能看到所有的loss函数,本文会简单对它们进行介绍1.L1Loss计算输入和目标之间的L1(即绝对值)损失。这种损失函数会计算预测值和目标值之间差的绝对值的平均。2.NLLLoss(负对数似然损失)首先找到每个样本模型预测的概率分布中对应于真实标签的那个值,然后取这个值的负数,最后对所有样本的损失取平均。即loss(x,class)=−x[class]3.NLLLoss2d(二维输
- 两种常用损失函数:nn.CrossEntropyLoss 与 nn.TripletMarginLoss
大多_C
人工智能算法python机器学习
两种用于模型训练的损失函数:nn.CrossEntropyLoss和nn.TripletMarginLoss。它们在对比学习和分类任务中各自扮演不同的角色。接下来是对这两种损失函数的详细介绍。1.nn.CrossEntropyLossnn.CrossEntropyLoss是PyTorch提供的交叉熵损失函数,通常用于多分类任务中。它结合了softmax激活函数和负对数似然损失(NegativeLo
- 深度学习与遗传算法的碰撞——利用遗传算法优化深度学习网络结构(详解与实现)
2401_84003733
程序员深度学习人工智能
self.model.add(layers.Dense(10,activation=‘relu’))self.model.build(input_shape=(4,28*28))self.model.summary()self.model.compile(optimizer=optimizers.Adam(lr=0.01),loss=losses.CategoricalCrossentropy(f
- pytorch正向传播没问题,loss.backward()使定义的神经网络中权重参数变为nan
加速却甩不掉伤悲
pytorch神经网络人工智能
记录一个非常坑爹的bug:loss回传导致神经网络中一个linear层的权重参数变为nan1.首先loss值是正常数值;2.查了好多网上的解决办法:检查原始输入神经网络数据有没有nan值,初始化权重参数,使用relu激活函数,梯度裁剪,降低优化器的学习率等等都没解决,个人认为这些应该影响不大,一般不会出问题;3.最后是使用如下异常检测:检测在loss回传过程中哪一块出现了问题torch.autog
- Focal Loss的简述与实现
友人Chi
人工智能机器学习深度学习
文章目录交叉熵损失函数样本不均衡问题FocalLossFocalLoss的代码实现交叉熵损失函数Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)Loss=L(y,\hat{p})=-ylog(\hat{p})-(1-y)log(1-\hat{p})Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)其中p^\hat{p}p^为预测概率大小。此处的交叉
- 【每天一句,30天学好英语】
壹典心理咨询
【2023-1-25】早安春夏秋冬Lookingatlifewithasimpleeye,peoplecanonlyliveonce!Don'tlivetootired!Ifwecanholdanormalheart,sitandwatchthecloudsriseandfall,theflowersblossomandthankyou,andthevicissitudesoflife,wecan
- 训练过程可视化tensorboard和wandb及np.array和tensor互相转换
小裴(碎碎念版)
python
tensorboardfromtensorboardXimportSummaryWriter#设置保存日志文件路径logger_path=os.path.join(path,current_time)logger=SummaryWriter(log_dir=logger_path,comment=comment)#要保存的数据logger.add_scalar("value_loss",value
- 西班牙语分类词汇(01)-星期的词汇与表达
胡老师的英语课
一直想写一点正式的西班牙语学习文章,今天它终于来了!打算以分类的形式分享西班牙语词汇,一起学习吧!星期díadelasemana星期一ellunes星期二elmartes星期三elmiércoles星期四eljueves星期五elviernes星期六elsábado星期日eldomingo每星期一loslunes每星期六lossábado假日díadefiesta今天是假日。Hoyesfiesta
- 【论文简介】Circle Loss: A Unified Perspective of Pair Similarity Optimization
萝莉狼
machinelearningcirclelossdeepfeaturelearning
CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization旷世cvpr2020的一篇文章,站在更高的视角,统一了deepfeaturelearning的两大基础loss:基于class-levellabel的loss(如softmax+crossentropy)和基于pair-wiselabel的loss(如tripletloss),指出了
- Circle Loss: A Unified Perspective of Pair Similarity Optimization简要阅读笔记
dailleson_
机器学习机器学习数据挖掘神经网络深度学习自然语言处理
1.背景常见的分类损失函数可以概括为减小类内距离sns_nsn,增大类间距离sps_psp。优化目标如下:min(sn−sp)min(s_n-s_p)min(sn−sp)2.存在的问题优化不够灵活。优化目标对sns_nsn和sps_psp的惩罚作用是相等的,二者的系数都为1。例如{sn,sp}={0.1,0.5}\{s_n,s_p\}=\{0.1,0.5\}{sn,sp}={0.1,0.5}。这个
- [论文笔记]Circle Loss: A Unified Perspective of Pair Similarity Optimization
愤怒的可乐
#文本匹配[论文]论文翻译/笔记自然语言处理论文阅读人工智能
引言为了理解CoSENT的loss,今天来读一下CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization。为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。这篇论文从对深度特征学习的成对相似度优化角度出发,旨在最大化同类之间的相似度sps_ps
- T4周:猴痘病识别
KLaycurryifans
深度学习
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊|接辅导、项目定制Z.心得感受+知识点补充1.ModelCheckpoint讲解函数原型:tf.keras.callbacks.ModelCheckpoint(filepath,monitor='val_loss',verbose=0,save_best_only=False,save_weights_only=False,mode='a
- 第T4周:使用TensorFlow实现猴痘病识别
oufoc
tensorflow人工智能python
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊文章目录一、前期工作1.设置GPU(如果使用的是CPU可以忽略这步)2.导入数据3.查看数据二、数据预处理1、加载数据2、数据可视化3、再次检查数据4、配置数据集三、构建CNN网络四、编译五、训练模型六、模型评估1.Loss与Accuracy图2.指定图片进行预测七、优化1、使用`model.evaluate`使用测试集评估模型2、网络结
- 三观超正的励志文案
Dimples甜
及时止损,及时行乐。CutYourlossesandhavefun.事情想做就不要拖。Ifyouwantsomethingdone,don'tputitoff.努力提升自己比指望他人要可靠。Workinghardtoimproveyourselfismorereliablethanrelgingonothers会过去的会到来的会拥有的。It'llpass,it'llcome,it'llbether
- Datawhale x李宏毅苹果书入门 AI夏令营 task03学习笔记
weixin_75033552
人工智能学习笔记
实践方法论训练模型的基本步骤:(如下图所示)用训练集训练模型,(最终得出来最优的参数集)将最优参数集带入模型中,用测试集测试模型(人话:将最优参数集带入原来函数中,用测试集的x值计算y值)(这个过程就叫做预测)训练过程中遇到问题的解决攻略(看下图的方式是“前序遍历”)modelbias出现问题的情况:1.看trainingdata的loss,太大;2.当你模型无论如何调整参数,训练的结果还是不够好
- PyTorch nn.MSELoss() 均方误差损失函数详解和要点提醒
Hoper.J
PyTorch笔记pytorchMSELoss均方误差
文章目录nn.MSELoss()均方误差损失函数参数数学公式元素版本要点附录参考链接nn.MSELoss()均方误差损失函数torch.nn.MSELoss(size_average=None,reduce=None,reduction='mean')Createsacriterionthatmeasuresthemeansquarederror(squaredL2norm)betweeneach
- pytorch中的nn.MSELoss()均方误差损失函数
AndrewPerfect
深度学习python基础pytorch基础pytorch人工智能python
一、nn.MSELoss()是PyTorch中的一个损失函数,用于计算均方误差损失。均方误差损失函数通常用于回归问题中,它的作用是计算目标值和模型预测值之间的平方差的平均值。具体来说,nn.MSELoss()函数的输入是两个张量,即模型的真实值和预测值,输出是一个标量,表示两个张量之间的均方误差。在训练神经网络时,通常将该损失函数作为优化器的目标函数,通过反向传播算法来更新模型的参数,以最小化均方
- Sealos安装K8s集群
corkii
kubernetes容器云原生k8s
一、什么是sealosSealos是一个功能强大、简单易用的云操作系统,它基于Kubernetes构建,提供了丰富的功能特性和灵活的应用商店,旨在降低云原生的门槛与成本,使用户能够更加轻松地享受云计算所带来的便利。二、安装Sealos命令行工具2.1获取Sealos版本列表$curl--silent"https://api.github.com/repos/labring/sealos/relea
- python 数据分析 损失数值 如何放到csv中呢 人工智能 深度神经网络,Pytorch ,tensorflow
zhangfeng1133
python人工智能数据分析
损失数值如何放到csv中呢在Python中,使用`csv`模块将数据写入CSV文件是一种常见的操作。从你提供的代码片段来看,你想要将损失数值写入名为`middle_losse.csv`的文件中。但是,你提供的代码片段中存在一些需要修改的地方,以确保数据能够正确地写入CSV文件。首先,`csv.writer`对象的`writerows`方法需要一个可迭代对象,例如列表的列表,而不是单个列表。如果你的
- Is breakfast important?
俗世尘沙
Breakfastdoesn'thavemuchtodowithweightloss早餐与减重并没有太大关系Breakfasthaslongbeenhailedasthemostimportantmealoftheday,andovertime,itspurportedbenefitshaveexpandedtoincludeweightcontrol.Butitturnsouteatingbre
- 机器学习和深度学习中常见损失函数,包括损失函数的数学公式、推导及其在不同场景中的应用
早起星人
机器学习深度学习人工智能
目录引言什么是损失函数?常见损失函数介绍3.1均方误差(MeanSquaredError,MSE)3.2交叉熵损失(Cross-EntropyLoss)3.3平滑L1损失(SmoothL1Loss)3.4HingeLoss(合页损失)3.5二进制交叉熵损失(BinaryCross-EntropyLoss)3.6KL散度(KLDivergence)3.7Huber损失(HuberLoss)3.8对比
- 理解PyTorch版YOLOv5模型构架
LabVIEW_Python
一个深度学习模型,可以拆解为:模型构架(ModelArchitecture):下面详述激活函数(ActivationFunction):YOLOv5在隐藏层中使用了LeakyReLU激活函数,在最后的检测层中使用了Sigmoid激活函数,参考这里优化函数(OptimizationFunction):YOLOv5的默认优化算法是:SGD;可以通过命令行参数更改为Adam损失函数(LossFuncti
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理