我们把构造连通网的最小代价生成树称为最小生成树,找连通网的最小生成树,经典的有两种算法:普里姆算法(Prim)
和克鲁斯卡尔算法(Kruskal)
。
有如下邻接矩阵,9个顶点,左侧数字为行号,INFINITY为极大值65535,MAXVEX为顶点个数最大值,此处大于等于9即可。
void MiniSpanTree_Prim(MGraph G)/* Prim算法生成最小生成树 */
{
int min, i, j, k;
int adjvex[MAXVEX]; /* 保存相关顶点下标 */
int lowcost[MAXVEX]; /* 保存相关顶点间边的权值 */
lowcost[0] = 0;/* 初始化第一个权值为0,即v0加入生成树。lowcost的值为0,在这里就是此下标的顶点已经加入生成树 */
adjvex[0] = 0; /* 初始化第一个顶点下标为0 */
for(i = 1; i < G.numVertexes; i++) /* 循环除下标为0外的全部顶点 */
{
lowcost[i] = G.arc[0][i]; /* 将v0顶点与之有边的权值存入数组 */
adjvex[i] = 0; /* 初始化都为v0的下标 */
}
for(i = 1; i < G.numVertexes; i++)
{
min = INFINITY; /* 初始化最小权值为∞,通常设置为不可能的大数字如32767、65535等 */
j = 1;k = 0;
while(j < G.numVertexes) /* 循环全部顶点 */
{
if(lowcost[j]!=0 && lowcost[j] < min)/* 如果权值不为0且权值小于min */
{
min = lowcost[j]; /* 则让当前权值成为最小值 */
k = j; /* 将当前最小值的下标存入k */
}
j++;
}
printf("(%d, %d)\n", adjvex[k], k);/* 打印当前顶点边中权值最小的边 */
lowcost[k] = 0;/* 将当前顶点的权值设置为0,表示此顶点已经完成任务 */
for(j = 1; j < G.numVertexes; j++) /* 循环所有顶点 */
{
if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j])
{/* 如果下标为k顶点各边权值小于此前这些顶点未被加入生成树权值 */
lowcost[j] = G.arc[k][j];/* 将较小的权值存入lowcost相应位置 */
adjvex[j] = k; /* 将下标为k的顶点存入adjvex */
}
}
}
}
#include "stdio.h"
#include "stdlib.h"
#include "io.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXEDGE 20
#define MAXVEX 20
#define INFINITY 65535
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef struct
{
int arc[MAXVEX][MAXVEX];
int numVertexes, numEdges;
}MGraph;
void CreateMGraph(MGraph *G)/* 构件图 */
{
int i, j;
/* printf("请输入边数和顶点数:"); */
G->numEdges = 15;
G->numVertexes = 9;
for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
{
for (j = 0; j < G->numVertexes; j++)
{
if (i == j)
G->arc[i][j] = 0;
else
G->arc[i][j] = G->arc[j][i] = INFINITY;
}
}
G->arc[0][1] = 10;
G->arc[0][5] = 11;
G->arc[1][2] = 18;
G->arc[1][8] = 12;
G->arc[1][6] = 16;
G->arc[2][8] = 8;
G->arc[2][3] = 22;
G->arc[3][8] = 21;
G->arc[3][6] = 24;
G->arc[3][7] = 16;
G->arc[3][4] = 20;
G->arc[4][7] = 7;
G->arc[4][5] = 26;
G->arc[5][6] = 17;
G->arc[6][7] = 19;
for (i = 0; i < G->numVertexes; i++)
{
for (j = i; j < G->numVertexes; j++)
{
G->arc[j][i] = G->arc[i][j];
}
}
}
/* Prim算法生成最小生成树 */
void MiniSpanTree_Prim(MGraph G)
{
int min, i, j, k;
int adjvex[MAXVEX]; /* 保存相关顶点下标 */
int lowcost[MAXVEX]; /* 保存相关顶点间边的权值 */
lowcost[0] = 0;/* 初始化第一个权值为0,即v0加入生成树 */
/* lowcost的值为0,在这里就是此下标的顶点已经加入生成树 */
adjvex[0] = 0; /* 初始化第一个顶点下标为0 */
for (i = 1; i < G.numVertexes; i++) /* 循环除下标为0外的全部顶点 */
{
lowcost[i] = G.arc[0][i]; /* 将v0顶点与之有边的权值存入数组 */
adjvex[i] = 0; /* 初始化都为v0的下标 */
}
for (i = 1; i < G.numVertexes; i++)
{
min = INFINITY; /* 初始化最小权值为∞, */
/* 通常设置为不可能的大数字如32767、65535等 */
j = 1; k = 0;
while (j < G.numVertexes) /* 循环全部顶点 */
{
if (lowcost[j] != 0 && lowcost[j] < min)/* 如果权值不为0且权值小于min */
{
min = lowcost[j]; /* 则让当前权值成为最小值 */
k = j; /* 将当前最小值的下标存入k */
}
j++;
}
printf("(%d, %d)\n", adjvex[k], k);/* 打印当前顶点边中权值最小的边 */
lowcost[k] = 0;/* 将当前顶点的权值设置为0,表示此顶点已经完成任务 */
for (j = 1; j < G.numVertexes; j++) /* 循环所有顶点 */
{
if (lowcost[j] != 0 && G.arc[k][j] < lowcost[j])
{/* 如果下标为k顶点各边权值小于此前这些顶点未被加入生成树权值 */
lowcost[j] = G.arc[k][j];/* 将较小的权值存入lowcost相应位置 */
adjvex[j] = k; /* 将下标为k的顶点存入adjvex */
}
}
}
}
int main(void)
{
MGraph G;
CreateMGraph(&G);
MiniSpanTree_Prim(G);
system("pause");
return 0;
}
运行结果为:
<0,1>
<0,5>
<1,8>
<8,2>
<1,6>
<6,7>
<7,4>
<7,3>
普里姆算法是以某顶点为起点1,逐步找各顶点上最小权值的边来构建最小生成树的。同样,我们也可以直接就以边为目标去构建,因为权值在边上,直接去找最小权值的边来构建生成树也是很自然的想法,只不过构建时要考虑是否会形成环路而已。此时边集数组结构的定义代码为:
/*对边集数组Edge结构的定义*/
typedef struct
{
int begin;
int end;
int weight;
}Edge;
于是克鲁斯卡尔算法代码如下,左侧数字为行号。其中MAXEDGE为边数量的极大值,此处大约等于15即可,MAXVEX为顶点个数最大值,此处大于等于9即可。
#include "stdio.h"
#include "stdlib.h"
#include "io.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
#define MAXEDGE 20
#define MAXVEX 20
#define INFINITY 65535
typedef struct
{
int arc[MAXVEX][MAXVEX];
int numVertexes, numEdges;
}MGraph;
typedef struct
{
int begin;
int end;
int weight;
}Edge; /* 对边集数组Edge结构的定义 */
/* 构件图 */
void CreateMGraph(MGraph *G)
{
int i, j;
/* printf("请输入边数和顶点数:"); */
G->numEdges = 15;
G->numVertexes = 9;
for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
{
for (j = 0; j < G->numVertexes; j++)
{
if (i == j)
G->arc[i][j] = 0;
else
G->arc[i][j] = G->arc[j][i] = INFINITY;
}
}
G->arc[0][1] = 10;
G->arc[0][5] = 11;
G->arc[1][2] = 18;
G->arc[1][8] = 12;
G->arc[1][6] = 16;
G->arc[2][8] = 8;
G->arc[2][3] = 22;
G->arc[3][8] = 21;
G->arc[3][6] = 24;
G->arc[3][7] = 16;
G->arc[3][4] = 20;
G->arc[4][7] = 7;
G->arc[4][5] = 26;
G->arc[5][6] = 17;
G->arc[6][7] = 19;
for (i = 0; i < G->numVertexes; i++)
{
for (j = i; j < G->numVertexes; j++)
{
G->arc[j][i] = G->arc[i][j];
}
}
}
/* 交换权值 以及头和尾 */
void Swapn(Edge *edges, int i, int j)
{
int temp;
temp = edges[i].begin;
edges[i].begin = edges[j].begin;
edges[j].begin = temp;
temp = edges[i].end;
edges[i].end = edges[j].end;
edges[j].end = temp;
temp = edges[i].weight;
edges[i].weight = edges[j].weight;
edges[j].weight = temp;
}
/* 对权值进行排序 */
void sort(Edge edges[], MGraph *G)
{
int i, j;
for (i = 0; i < G->numEdges; i++)
{
for (j = i + 1; j < G->numEdges; j++)
{
if (edges[i].weight > edges[j].weight)
{
Swapn(edges, i, j);
}
}
}
printf("权排序之后的为:\n");
for (i = 0; i < G->numEdges; i++)
{
printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
}
}
/* 查找连线顶点的尾部下标 */
int Find(int *parent, int f)
{
while (parent[f] > 0)
{
f = parent[f];
}
return f;
}
/* 生成最小生成树 */
void MiniSpanTree_Kruskal(MGraph G)
{
int i, j, n, m;
int k = 0;
int parent[MAXVEX];/* 定义一数组用来判断边与边是否形成环路 */
Edge edges[MAXEDGE];/* 定义边集数组,edge的结构为begin,end,weight,均为整型 */
/* 用来构建边集数组并排序********************* */
for (i = 0; i < G.numVertexes - 1; i++)
{
for (j = i + 1; j < G.numVertexes; j++)
{
if (G.arc[i][j]<INFINITY)
{
edges[k].begin = i;
edges[k].end = j;
edges[k].weight = G.arc[i][j];
k++;
}
}
}
sort(edges, &G);
/* ******************************************* */
for (i = 0; i < G.numVertexes; i++)
parent[i] = 0; /* 初始化数组值为0 */
printf("打印最小生成树:\n");
for (i = 0; i < G.numEdges; i++) /* 循环每一条边 */
{
n = Find(parent, edges[i].begin);
m = Find(parent, edges[i].end);
if (n != m) /* 假如n与m不等,说明此边没有与现有的生成树形成环路 */
{
parent[n] = m; /* 将此边的结尾顶点放入下标为起点的parent中。 */
/* 表示此顶点已经在生成树集合中 */
printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
}
}
}
int main(void)
{
MGraph G;
CreateMGraph(&G);
MiniSpanTree_Kruskal(G);
system("pause");
return 0;
}
运行结果为:
权排序之后的为:
(4, 7) 7
(2, 8) 8
(0, 1) 10
(0, 5) 11
(1, 8) 12
(3, 7) 16
(1, 6) 16
(5, 6) 17
(1, 2) 18
(6, 7) 19
(3, 4) 20
(3, 8) 21
(2, 3) 22
(3, 6) 24
(4, 5) 26
打印最小生成树:
(4, 7) 7
(2, 8) 8
(0, 1) 10
(0, 5) 11
(1, 8) 12
(3, 7) 16
(1, 6) 16
(6, 7) 19