kaggle —— IMDB影评得分估计竞赛代码

IMDB影评得分估计竞赛代码

# -*- coding: utf-8 -*-
"""
Created on Mon Apr  2 11:11:39 2017

@author: yichengfan
"""

import pandas as pd

train = pd.read_csv(r'F:\TS\03_other_parts\kaggle\02_IMDB\02_data\labeledTrainData.tsv', delimiter='\t')
test = pd.read_csv(r'F:\TS\03_other_parts\kaggle\02_IMDB\02_data\testData.tsv', delimiter='\t')

##查看一下各自的前几条数据
train.head()
'''
       id  sentiment                                             review
0  5814_8          1  With all this stuff going down at the moment w...
1  2381_9          1  \The Classic War of the Worlds\" by Timothy Hi...
2  7759_3          0  The film starts with a manager (Nicholas Bell)...
3  3630_4          0  It must be assumed that those who praised this...
4  9495_8          1  Superbly trashy and wondrously unpretentious 8...
'''
test.head()
'''
         id                                             review
0  12311_10  Naturally in a film who's main themes are of m...
1    8348_2  This movie is a disaster within a disaster fil...
2    5828_4  All in all, this is a movie for kids. We saw i...
3    7186_2  Afraid of the Dark left me with the impression...
4   12128_7  A very accurate depiction of small time mob li...
'''

#从bs4导入beautifulSoup用于整洁原始文本
from bs4 import BeautifulSoup
#从nltk.corpus 里导入停用词列表(nltk自然语言处理包)
from nltk.corpus import stopwords
import re

#定义函数,完成对原始评论的三项数据处理任务
def review_to_text(review, remove_stopwords):
    #去掉html标记
    raw_text = BeautifulSoup(review, 'html').get_text()
    #去掉非字母字符
    letters = re.sub('[^a-zA-Z]', ' ', raw_text)
    words = letters.lower().split()
    #如果remove_stopwords被激活,则去掉评论里的停用词
    if remove_stopwords:
        stop_words = set(stopwords.words('english'))
        words = [w for w in words if w not in stop_words]
    #返回每条评论经此三项预处理任务的词汇列表
    return words

#调用函数处理数据
X_train = []
for review in train['review']:
    X_train.append(' '.join(review_to_text(review, True)))

X_test = []
for review in test['review']:
    X_test.append(' '.join(review_to_text(review, True)))

y_train = train['sentiment']


#导入文本特性抽取器CountVectorizer, TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB  #贝叶斯模型
from sklearn.pipeline import Pipeline  #用于方便搭建系统流程
from sklearn.grid_search import GridSearchCV #超参数组合的网格搜索

#使用Pipline搭建两组使用朴素贝叶斯模型的分类器,
#区别在于分别使用CountVectorizer, TfidfVectorizer对文本进行抽取
pip_count = Pipeline([('count_vec', CountVectorizer(analyzer='word')), ('mnb', MultinomialNB())])
pip_tfidf = Pipeline([('tfidf_vec', TfidfVectorizer(analyzer='word')), ('mnb', MultinomialNB())])

#分别配置用于模型超参数搜索组合
params_count = {'count_vec__binary':[True, False], 'count_vec__ngram_range':[(1, 1), (1, 2)],
                'mnb__alpha':[0.1, 1.0, 10.0]}
params_tfidf = {'tfidf_vec__binary':[True, False], 'tfidf_vec__ngram_range':[(1, 1), (1, 2)],
                'mnb__alpha':[0.1, 1.0, 10.0]}

#使用采取4折交叉验证的方法使用CountVectorizer的朴素贝叶斯模型进行并行化超参数搜索
gs_count = GridSearchCV(pip_count, params_count, cv=4, n_jobs=-1, verbose=1)
gs_count.fit(X_train,y_train)
print(gs_count.best_score_)
'''0.88216'''
print(gs_count.best_params_)
'''
{'count_vec__binary': True, 'count_vec__ngram_range': (1, 2), 'mnb__alpha': 1.0}
'''

count_y_predict = gs_count.predict(X_test)



#使用采取4折交叉验证的方法使用TfidfVectorizer的朴素贝叶斯模型进行并行化超参数搜索
gs_tfidf = GridSearchCV(pip_tfidf, params_tfidf, cv = 4, n_jobs = -1, verbose =1)
gs_tfidf.fit(X_train,y_train)
print(gs_tfidf.best_score_)
'''0.88712'''
print(gs_tfidf.best_params_)
'''
{'mnb__alpha': 0.1, 'tfidf_vec__binary': True, 'tfidf_vec__ngram_range': (1, 2)}
'''

tfidf_y_predict = gs_tfidf.predict(X_test)


#使用pandas对需要提交的数据进行格式化
submission_count = pd.DataFrame({'id':test['id'],'sentiment':count_y_predict})
submission_tfidf = pd.DataFrame({'id':test['id'],'sentiment':tfidf_y_predict})

submission_count.to_csv(r'F:\TS\03_other_parts\kaggle\02_IMDB\04_output\submission_count.csv',
                        index = False)
submission_tfidf.to_csv(r'F:\TS\03_other_parts\kaggle\02_IMDB\04_output\submission_tfidf.csv',
                        index = False)




#从本地读入未标记数据
unlabeled_train = pd.read_csv(r'F:\TS\03_other_parts\kaggle\02_IMDB\02_data\unlabeledTrainData.tsv', delimiter='\t', quoting=3)
unlabeled_train.head()
'''
          id                                             review
0   "9999_0"  "Watching Time Chasers, it obvious that it was...
1  "45057_0"  "I saw this film about 20 years ago and rememb...
2  "15561_0"  "Minor Spoilers

In New York, Joan B... 3 "7161_0" "I went to see this film with a great deal of ... 4 "43971_0" "Yes, I agree with everyone on this site this ... '''
import nltk.data #准备使用nltk的tokenizer对影评的英文句子进行分割 tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') #定义函数逐条对影评进行分句 def review_to_sentences(review, tokenizer): raw_sentences = tokenizer.tokenize(review.strip()) sentences = [] for raw_sentence in raw_sentences: if len(raw_sentence) > 0: sentences.append(review_to_text(raw_sentence, False)) return sentences #准备用于训练词向量的数据 corpora = [] for review in unlabeled_train['review']: corpora += review_to_sentences(review, tokenizer) # 配置训练词向量模型的超参数 num_features = 300 min_word_count = 20 num_workers = 4 context = 10 downsampling = 1e-3 from gensim.models import word2vec print("Training model...") #开始词向量的训练 model = word2vec.Word2Vec(corpora, workers=num_workers, \ size=num_features, min_count = min_word_count, \ window = context, sample = downsampling) model.init_sims(replace=True) model_name = r"F:\TS\03_other_parts\kaggle\02_IMDB\02_data\300features_20minwords_10context" model.save(model_name) #读入已经训练好的词向量模型 from gensim.models import Word2Vec model = Word2Vec.load(model_name) #探查一下该词向量模型的训练成果 model.most_similar("man") ''' [('woman', 0.6398072242736816), ('lady', 0.593010663986206), ('lad', 0.5564907789230347), ('soldier', 0.5520418882369995), ('chap', 0.5444163084030151), ('person', 0.5429509878158569), ('guy', 0.5271977186203003), ('monk', 0.5111091136932373), ('men', 0.5074273347854614), ('boy', 0.5039346814155579)] ''' import numpy as np #定义一个函数使用词向量产生文本特征向量 def makeFeatureVec(words, model, num_features): featureVec = np.zeros((num_features,),dtype="float32") nwords = 0. index2word_set = set(model.index2word) for word in words: if word in index2word_set: nwords = nwords + 1. featureVec = np.add(featureVec,model[word]) featureVec = np.divide(featureVec,nwords) return featureVec #定义另一个每条影评转换为基于词向量的特征向量(平均词向量) def getAvgFeatureVecs(reviews, model, num_features): counter = 0 reviewFeatureVecs = np.zeros((len(reviews),num_features),dtype="float32") for review in reviews: reviewFeatureVecs[counter] = makeFeatureVec(review, model, num_features) counter += 1 return reviewFeatureVecs #准备新的基于词向量表示的训练和测试特征向量 clean_train_reviews = [] for review in train["review"]: clean_train_reviews.append( review_to_text( review, remove_stopwords=True )) trainDataVecs = getAvgFeatureVecs( clean_train_reviews, model, num_features ) clean_test_reviews = [] for review in test["review"]: clean_test_reviews.append( review_to_text( review, remove_stopwords=True )) testDataVecs = getAvgFeatureVecs( clean_test_reviews, model, num_features ) #梯度提升树 from sklearn.ensemble import GradientBoostingClassifier from sklearn.grid_search import GridSearchCV gbc = GradientBoostingClassifier() params_gbc = {'n_estimators':[10, 100, 500], 'learning_rate':[0.01, 0.1, 1.0], 'max_depth': [2, 3, 4]} gs = GridSearchCV(gbc, params_gbc, cv=4, n_jobs=-1, verbose=1) gs.fit(trainDataVecs, y_train) print(gs.best_score_) print(gs.best_params_) result = gs.predict(testDataVecs) # Write the test results output = pd.DataFrame( data={"id":test["id"], "sentiment":result} ) output.to_csv( r"F:\TS\03_other_parts\kaggle\02_IMDB\04_output\submission_w2v.csv", index=False, quoting=3)

你可能感兴趣的:(数据挖掘,kaggle)