- 基于 LDA SS-NMF 的文本主题分析可视化分析系统 毕业设计 附完整代码
程序员奇奇
计算机毕设课程设计python人工智能LDA主题分析
摘要在机器学习和自然语言处理领域中,主题模型(TopicModel)是在一系列文档中发现抽象主题的一种统计模型,并被广泛地应用于文本文档集合的分析。近年来,各种主题建模技术,特别是概率图建模技术,取得了显著的进展,其中隐含狄利克雷分布(LDA)等最先进的技术已经成功地应用于可视化文本分析。然而,大多数基于概率模型的方法在多次运行的一致性和经验收敛性方面存在缺陷。此外,由于公式和算法的复杂性,LDA
- 深入理解LDA主题模型及其在文本分析中的应用
小高要坚强
python信息可视化matplotlib算法分类
深入理解LDA主题模型及其在文本分析中的应用在自然语言处理领域,主题模型是一种强大的工具,能够自动发现文档集中的潜在主题。在大规模文本数据分析中,LatentDirichletAllocation(LDA)是最受欢迎的主题模型之一。LDA的核心目标是从文档集中提取不同的主题,并确定每篇文档属于这些主题的概率分布。本文将详细介绍LDA主题模型的原理、如何使用Python实现LDA,并演示如何将其应用
- LSA 主题模型
dreampai
1、原理通过对大量的文本集进行统计分析,从中提取出词语的上下文使用含义。技术上通过SVD分解等处理,消除了同义词、多义词的影响,提高了后续处理的精度。分析文档集合,建立词汇-文本矩阵。对词汇-文本矩阵进行奇异值分解。对SVD分解后的矩阵进行降维使用降维后的矩阵构建潜在语义空间image.png第一个小矩阵X是对词进行分类的一个结果,它的每一行表示一个词,每一列表示一个语义相近的词类,这一行中每个非
- 基于Python的微信聊天记录分析——可视化方法与主题模型构建
HHHenry2Hero
python数据分析数据挖掘自然语言处理中文分词数据可视化
本篇为《基于Python的微信聊天记录分析》系列的第三篇,主要讲解在Python环境下对聊天记录进行进一步的可视化,并对聊天内容进行初步挖掘,涉及聊天记录可视化方法、主题模型构建等内容。希望和大家多多交流,共同进步!一.聊天记录可视化在上一篇中,我们将聊天记录统计分析的结果进行了初步可视化,包括按日期统计聊天频次、按每天不同时段统计聊天频次、高频词汇统计战士等内容,总体来说,可视化的是一些数学统计
- nlp文本主题提取算法总结
mqdlff_python
自然语言处理人工智能
BERTopic:简介:基于预训练的语言模型BERT(BidirectionalEncoderRepresentationsfromTransformers)的主题模型,通过将文档嵌入到BERT空间中并进行聚类,实现主题提取。作者:出自Cherubin等人的研究(2021)。BigARTM(BigAdditiveRegularizationTopicModel):简介:BigARTM是一种多模态、
- PLSA 和 LDA 对比?
爱打网球的小哥哥一枚吖
信息检索人工智能机器学习
PLSA和LDA都是主题模型,但PLSA是基于最大似然估计的生成式模型,而LDA是基于贝叶斯推断的生成式模型。LDA具有更好的泛化性能和对稀疏数据的建模能力,但计算复杂度较高。在实际应用中,可以根据具体需求选择适合的模型。
- 文本挖掘之主题分析的详细介绍
亦旧sea
机器学习人工智能算法
文本挖掘的主题分析是什么文本挖掘的主题分析是指通过计算机自动处理文本数据,识别出文本中的主题和话题。主题指的是文本中的核心概念或议题,而话题则是具体的讨论点或事件。主题分析可以帮助人们快速了解大量文本数据中的内容和趋势,从而支持信息检索、舆情分析、情感分析、知识发现等应用。主题分析的主要方法包括文本聚类、主题模型、关键词提取等。文本挖掘的主题分析的特点是什么,优缺点是什么文本挖掘的主题分析是通过对
- 超详细EM算法举例及推导
老实人小李
聚类算法聚类
最好先学习一下极大似然EM(Expectation-Maximum)算法也称期望最大化算法,曾入选“数据挖掘十大算法”中,可见EM算法在机器学习、数据挖掘中的影响力。EM算法是最常见的隐变量估计方法,在机器学习中有极为广泛的用途,例如常被用来学习高斯混合模型(Gaussianmixturemodel,简称GMM)的参数;隐式马尔科夫算法(HMM)、LDA主题模型的变分推断等等。EM算法是一种迭代优
- RabbitMQ详细入门(让你从小白到大白)
JAVA贩卖机
java开发语言rabbitmqjava-rabbitmq搜索引擎
目录一、前言二、RabbitMQ的介绍什么是MQ?使用场景常见的MQ产品三、RabbitMQ入门四、五种消息模型Simple-简单模型代码生产者发送消息消费者获取消息消息确认机制(ACK)自动ACK存在的问题演示手动ACKWork-工作模型生产者消费者1消费者2能者多劳Fanout-广播模型生产者消费者1消费者2Direct-定向模型生产者消费者1消费者2Topic-主题模型生产者消费者1消费者2
- NLP学习(2)
Tang_Genie
关于NLP的词向量对比1.bag-of-wordsBOW是词袋模型,文本中各个词之间的顺序,语义,位置信息不予考虑,将文本看作若干个词的组合,这些词都是独立的,不依赖其他词,常用的有one-hot,tf-idf,textrank等。2.主题模型LSA(潜在语义分析模型,主要解决文档中的一词多义和一义多词问题,主要将高维空间映射到低维空间(也叫潜在语义空间),主要通过SVD(奇异值矩阵分解)。lat
- 【论文阅读】BERTopic:采用一个基于类的TF-IDF流程进行神经网络的主题建模
沐兮Krystal
NLP论文阅读神经网络聚类
摘要主题模型对于在文档的集合中发现潜在的主题非常有用。近期的研究已经展示了主题建模方法作为一个聚类任务的可行性。本文展示了BERTopic,它是一个话题模型,它通过对一个基于类的TF-IDF的变体的开发,抽取一致的话题表示。具体来说,BERTopic采用预训练的基于transformer的语言模型来产生文档的嵌入,对这些文档嵌入进行聚类,并最后利用基于类的TF-IDF过程来产生话题的表示。BERT
- 主题模型--BERTopic python解析
Andy_shenzl
NLP1024程序员节BERTopic
一、概念1.1主题模型主题模型(TopicModel)是自然语言处理中的一种常用模型,是一种无监督学习方法,它用于从大量文档中自动提取主题信息。主题模型的核心思想是,每篇文档都可以看作是多个主题的混合,而每个主题则由一组词构成。主题模型能够帮助我们理解文档集中的主题结构,有助于文档分类、聚类和信息检索。主题模型能够将高维的文本数据降维到低维的主题空间,便于后续的分析和处理。1.2BERTopicB
- 主题模型——总结
dreampai
UnigramModel统计学下的UnigramModelimage.pngimage.png贝叶斯观点下的UnigramModelimage.pngDirichlet先验分布下的UnigramModelimage.pngimage.pngTopicModel⁄PLSAimage.pngimage.pngLDA建模image.pngimage.pngimage.pngimage.pngimage.
- 用通俗易懂的方式讲解:关键词提取方法总结及实现
深度学习算法与自然语言处理
机器学习人工智能python
文章目录一、关键词提取概述二、TF-IDF关键词提取算法及实现三、TextRank关键词提取算法实现四、LDA主题模型关键词提取算法及实现五、Word2Vec词聚类的关键词提取算法及实现六、信息增益关键词提取算法及实现七、互信息关键词提取算法及实现八、卡方检验关键词提取算法及实现九、基于树模型的关键词提取算法及实现十、总结NLP内容序列目录一、关键词提取概述关键词是能够表达文档中心内容的词语,常用
- 「NLP主题分析」LDA隐含狄利克雷分布(Latent Dirichlet Allocation)
Reese小朋友
MachineLearningStuffs自然语言处理人工智能
是基于贝叶斯思想的无监督的聚类算法,广泛用于文本聚类,文本分析,文本关键词等场景。LDA主题模型主要用于推测文档的主题分布,可以将文档集中每篇文档的主题以概率分布的形式给出根据主题进行主题聚类或文本分类。LDA主题模型不关心文档中单词的顺序,通常使用词袋特征(bag-of-wordfeature)来代表文档。-先了解LDA的生成模型,LDA认为一篇文章是怎么形成的呢?LDA模型认为主题可以由一个词
- 解决用pyLDAvis做可视化的时候报错:TerminatedWorkerError: A worker process managed by the executor was...
分毫析厘
pythonpipconda
最近在学LDA主题模型分析,前面文本预处理的代码都调试好了,最后用pyLDAvis进行可视化的时候一直报错:TerminatedWorkerError:Aworkerprocessmanagedbytheexecutorwasunexpectedlyterminated.Thiscouldbecausedbyasegmentationfaultwhilecallingthefunctionorby
- 如何基于gensim和Sklearn实现文本矢量化
一马平川的大草原
数据处理后端机器学习sklearnpython自然语言处理文本向量化
大家利用机器学习或深度学习开展文本分类或关联性分析之前,由于计算机只能分析数值型数据,而人类所熟悉的自然语言文字,机器学习算法是一窍不通的,因此需要将大类的文本及前后关系进行设计,并将其转换为数值化表示。一般来说,文本语言模型主要有词袋模型(BOW)、词向量模型和主题模型,目前比较常见是前两种,各种机器学习框架都有相应的word2vec的机制和支持模型,比如gensim和Scikit-learn(
- 转载 NLP之文本匹配及语义匹配应用介绍
chenxinvhai89
NLP
版权声明:本文为博主原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/ling620/article/details/95468908文章目录1、什么是文本匹配?2、文本匹配方法概述2-1传统文本匹配方法2-2主题模型2-3深度语义匹配模型表示型交互型3、语义匹配应用介绍3-1短文本-短文本语义匹配3-2短文本-长文本
- 基于主题模型的专利文本主题挖掘与应用研究- 专利文本主题挖掘方法
hannah_luo
基于分类需要认为提前设定好一定的分类标准,并需要规定好各个主题类别信息,它是一种有监督或者半监督的方法,对于一个新文本的归类过程也是对其文本主题信息解读的过程。基于聚类无监督通过对聚类各个类簇进行解读,从而发现文本的主题信息。三种流程基于分类号从分类角度识别专利技术主题信息专利文本通常都有IPC分类号,该分类号对解读文本技术主题信息具有重要作用。一个专利通常都有一个以上IPC分类号,第一个为主分类
- 手把手教程:构建基于内容的数据科学文章推荐器
「已注销」
AI热点文章数据科学文章推荐器python人工智能
全文共8100字,预计学习时长16分钟众所周知,在数据科学界十分流行写博客。这种方式也体现了数据科学开源共享的根源。数据科学家们找出某一问题的创新性解法后,最喜欢做的就是将其记录下来。在数据科学界,写博客是项双赢之举,编者可从中获取知名度,读者则可获取知识。本教程会借助主题建模来归纳数据科学有关文章的特点,然后用主题模型的输出结果来搭建基于内容的推荐器。我们将以Kaggle数据集媒体文章(含内容)
- Gensim
喝醉酒的小白
Python第三方库
Gensim从最原始的非结构化的文本中,无监督的学习到文本隐层的主题向量表达;支持包括LDATF-IDFLSAword2vec等主题模型算法。官网基本概念语料Corpus向量Vector稀疏向量SparseVector模型Model安装安装环境Ubuntu18.04Anaconda3-5.3.1!pipinstallgensim!condalist|grepgensimgensim3.8.3!pi
- Gensim库——文本处理和主题建模的强大工具
非著名程序员阿强
人工智能
在信息时代,海量的文本数据不断地涌现。如何从这如山如海的文本中提取有意义的信息,成为了一项关键任务。Python语言提供了许多优秀的库和工具来处理文本数据,其中一款备受推崇的工具就是Gensim库。Gensim是一个开源的Python库,它是构建主题模型和进行文本相似度计算的先进工具。本文将介绍Gensim库,解释其基本原理和功能,并通过实例演示如何使用Gensim库进行文本处理和主题建模。一、G
- RabbitMq
春雨燎原
中间件rabbitmq分布式
目录一、为什么要用到RabbitMq?二、RabbitMq有什么作用?1.解耦2.异步三、RabbitMq的模型1.helloword模型2.Work模型3.发布订阅模型4.路由键模型5.主题模型四、RabbitMq跟SpringBoot的整合1.导入依赖2.yml配置3.创建队列、创建交换机、将队列与交换机绑定并设置路由键4.生产者发送消息5.消费者消费消息五、ACK机制1.什么是消息确认机制?
- 基于LDA主题+协同过滤+矩阵分解算法的智能电影推荐系统——机器学习算法应用(含python、JavaScript工程源码)+MovieLens数据集(三)
小胡说人工智能
机器学习推荐系统学习路线机器学习pythonjavascripthtmldjango人工智能协同过滤
目录前言总体设计系统整体结构图系统流程图运行环境模块实现1.数据爬取及处理2.模型训练及保存1)协同过滤2)矩阵分解3)LDA主题模型3.接口实现1)流行电影推荐2)相邻用户推荐3)相似内容推荐相关其它博客工程源代码下载其它资料下载前言前段时间,博主分享过关于一篇使用协同过滤算法进行智能电影推荐系统的博文《基于TensorFlow+CNN+协同过滤算法的智能电影推荐系统——深度学习算法应用(含微信
- LDA模型参数设置,训练效果较好
喔就是哦噢喔
NLP中文数据处理深度学习机器学习人工智能
前言:写小论文用到lda主题模型,在网上找了一圈没有找到训练效果较好的模型参数示例。为了写出小论文做了很多次实验,达到了实验中最好的效果,故贴出代码:fromgensim.modelsimportLdaModellda=LdaModel(corpus=corpus,id2word=dictionary,num_topics=size_lda,alpha="auto",eta='auto',pass
- LDA模型,获取所有的文档-主题分布(即得到文档对于每个主题的概率分布)并保存
喔就是哦噢喔
NLP中文数据处理python自然语言处理
前言:写小论文用到lda主题模型,需要得到所有的文档-主题分布。现有的只是为文档输出前几个概率大的主题代码:importnumpyasnpfromgensim.modelsimportLdaModel#训练lda模型lda=LdaModel(corpus=corpus,id2word=dictionary,num_topics=size_lda,minimum_probability=0)"""s
- NLP-词向量-发展:词袋模型【onehot、tf-idf】 -> 主题模型【LSA、LDA】 -> 词向量静态表征【Word2vec、GloVe、FastText】 -> 词向量动态表征【Bert】
u013250861
#NLP/词向量_预训练模型word2vecbert自然语言处理
NLP-词向量-发展:词袋模型【onehot、tf-idf】主题模型【LSA、LDA】基于词向量的静态表征【Word2vec、GloVe、FastText】基于词向量的动态表征【Bert】一、词袋模型(Bag-Of-Words)1、One-Hot词向量的维数为整个词汇表的长度,对于每个词,将其对应词汇表中的位置置为1,其余维度都置为0。缺点是:维度非常高,编码过于稀疏,易出现维数灾难问题;不能体现
- 主题模型LDA教程:n-gram N元模型和nltk应用
Cachel wood
自然语言处理nlpeasyui前端javascriptLDAngramnltknlp
文章目录N-Gram模型原理概率估计nltk使用n-gramN-Gram模型N-Gram(N元模型)是自然语言处理中一个非常重要的概念。N-gram模型也是一种语言模型,是一种生成式模型。假定文本中的每个词wiw_{i}wi和前面N−1N-1N−1个词有关,而与更前面的词无关。这种假设被称为N-1阶马尔可夫假设,对应的语言模型称为N元模型。习惯上,1-gram叫unigram,2-gram称为bi
- 主题模型LDA教程:一致性得分coherence score方法对比(umass、c_v、uci)
Cachel wood
自然语言处理nlp机器学习人工智能numpynlpldaumassuci
文章目录主题建模潜在迪利克雷分配(LDA)一致性得分coherencescore1.CV一致性得分2.UMass一致性得分3.UCI一致性得分4.Word2vec一致性得分5.选择最佳一致性得分主题建模主题建模是一种机器学习和自然语言处理技术,用于确定文档中存在的主题。它能够确定单词或短语属于某个主题的概率,并根据它们的相似度或接近度对文档进行聚类。它通过分析文档中单词和短语的频率来实现这一目的。
- LDA主题模型中coherence(一致性)报错得出来为nan解决办法
Pluviophile_miao~
笔记python开发语言
参考链接:https://www.codenong.com/60246570/报错原因:D:\software\Anaconda\envs\LDA\lib\site-packages\gensim\topic_coherence\direct_confirmation_measure.py:204:RuntimeWarning:dividebyzeroencounteredindouble_sca
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb