今天又发现一些非常赞的Opengl学习网站:Shadertoy、twinklingstar,看到这些资源,真是相见恨晚啊,里面的东西真是太赞了,上一幅图大家就知道了。
怎么样?我第一眼看到这样的效果,真是被震惊到了,我操,这是什么操作,居然还能搞出来这样的效果,我的十个大拇指不由得想伸出来表达一下内心的赞,然而看看该效果的实现代码,我的内心再次崩溃,这个效果完全是由shader实现的!
Java代码是GlSeaRender类,完整源码如下:
package com.opengl.learn.aric;
import android.content.Context;
import android.opengl.GLES32;
import android.opengl.GLSurfaceView;
import android.util.Log;
import com.opengl.learn.OpenGLUtils;
import com.opengl.learn.R;
import com.opengl.learn.aric.material.MaterialCube;
import com.opengl.learn.aric.material.MaterialLight;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import static android.opengl.GLES20.GL_ARRAY_BUFFER;
import static android.opengl.GLES20.GL_COLOR_BUFFER_BIT;
import static android.opengl.GLES20.GL_DEPTH_BUFFER_BIT;
import static android.opengl.GLES20.GL_DEPTH_TEST;
import static android.opengl.GLES20.GL_FLOAT;
import static android.opengl.GLES20.GL_STATIC_DRAW;
import static android.opengl.GLES20.GL_TEXTURE0;
import static android.opengl.GLES20.GL_TEXTURE1;
import static android.opengl.GLES20.GL_TEXTURE_2D;
import static android.opengl.GLES20.GL_TRIANGLES;
import static android.opengl.GLES20.glGenBuffers;
import static android.opengl.GLES20.glGetUniformLocation;
public class GlSeaRender implements GLSurfaceView.Renderer {
private static final String TAG = GlSeaRender.class.getSimpleName();
private final float[] mVerticesData =
{
-1.0f, 1.0f, 0.0f,
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
1.0f, 1.0f, 0.0f,
-1.0f, 1.0f, 0.0f,
};
private static final int BYTES_PER_FLOAT = 4;
private static final int POSITION_COMPONENT_COUNT = 3;
private Context mContext;
private FloatBuffer mVerticesBuffer;
private int mProgramObject, mVAO, mVBO, uTime, uResolution;
private int mWidth, mHeight;
private long startTime;
public GlSeaRender(Context context) {
mContext = context;
mVerticesBuffer = ByteBuffer.allocateDirect(mVerticesData.length * BYTES_PER_FLOAT)
.order(ByteOrder.nativeOrder()).asFloatBuffer();
mVerticesBuffer.put(mVerticesData).position(0);
}
@Override
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
mProgramObject = OpenGLUtils.loadProgram(mContext, R.raw.glsea_vertex, R.raw.glsea_fragment);
uTime = glGetUniformLocation(mProgramObject, "uTime");
uResolution = glGetUniformLocation(mProgramObject, "uResolution");
int[] array = new int[1];
GLES32.glGenVertexArrays(array.length, array, 0);
mVAO = array[0];
array = new int[1];
glGenBuffers(array.length, array, 0);
mVBO = array[0];
Log.e(TAG, "onSurfaceCreated, " + mProgramObject + ", uTime: " + uTime + ", uResolution: " + uResolution);
GLES32.glBindVertexArray(mVAO);
mVerticesBuffer.position(0);
GLES32.glBindBuffer(GL_ARRAY_BUFFER, mVBO);
GLES32.glBufferData(GL_ARRAY_BUFFER, BYTES_PER_FLOAT * mVerticesData.length, mVerticesBuffer, GL_STATIC_DRAW);
GLES32.glVertexAttribPointer(0, POSITION_COMPONENT_COUNT, GL_FLOAT, false, 0, 0);
GLES32.glEnableVertexAttribArray(0);
}
@Override
public void onSurfaceChanged(GL10 gl, int width, int height) {
mWidth = width;
mHeight = height;
}
@Override
public void onDrawFrame(GL10 gl) {
long now = System.currentTimeMillis();
if (startTime == 0) {
startTime = now;
}
float time = (now - startTime) / (1000f * 5f);
GLES32.glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
GLES32.glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
GLES32.glEnable(GL_DEPTH_TEST);
GLES32.glUseProgram(mProgramObject);
GLES32.glUniform1f(uTime, time);
GLES32.glUniform2f(uResolution, mWidth, mHeight);
GLES32.glEnableVertexAttribArray(0);
GLES32.glBindVertexArray(mVAO);
GLES32.glDrawArrays(GL_TRIANGLES, 0, mVerticesData.length);
GLES32.glBindVertexArray(0);
GLES32.glDisableVertexAttribArray(0);
}
}
很简单,就是六个点,绘制了两个三解形,拼起来成为一个矩形而已,里边的逻辑现在对我们来说已经非常基础了,大家如果还有疑问,请往前翻,复习一下以前的章节。
顶点着色器源码如下:
#version 320 es
layout(location = 0) in vec3 aPosition;
void main()
{
gl_Position = vec4(aPosition, 1.0);
}
也是超级简单,再来看片段着色器,源码如下:
/*
* "Seascape" by Alexander Alekseev aka TDM - 2014
* License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
* Contact: [email protected]
*/
#version 320 es
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
out vec4 FragColor;
uniform float uTime;
uniform vec2 uResolution;
const int NUM_STEPS = 8;
const float PI = 3.141592;
const float EPSILON = 1e-3;
#define EPSILON_NRM (0.1 / uResolution.x)
// sea
const int ITER_GEOMETRY = 3;
const int ITER_FRAGMENT = 5;
const float SEA_HEIGHT = 0.6;
const float SEA_CHOPPY = 4.0;
const float SEA_SPEED = 0.8;
const float SEA_FREQ = 0.16;
const vec3 SEA_BASE = vec3(0.1, 0.19, 0.22);
const vec3 SEA_WATER_COLOR = vec3(0.8, 0.9, 0.6);
#define SEA_TIME (1.0 + uTime * SEA_SPEED)
const mat2 octave_m = mat2(1.6, 1.2, -1.2, 1.6);
// math
mat3 fromEuler(vec3 ang) {
vec2 a1 = vec2(sin(ang.x), cos(ang.x));
vec2 a2 = vec2(sin(ang.y), cos(ang.y));
vec2 a3 = vec2(sin(ang.z), cos(ang.z));
mat3 m;
m[0] = vec3(a1.y*a3.y+a1.x*a2.x*a3.x, a1.y*a2.x*a3.x+a3.y*a1.x, -a2.y*a3.x);
m[1] = vec3(-a2.y*a1.x, a1.y*a2.y, a2.x);
m[2] = vec3(a3.y*a1.x*a2.x+a1.y*a3.x, a1.x*a3.x-a1.y*a3.y*a2.x, a2.y*a3.y);
return m;
}
float hash(vec2 p) {
float h = dot(p, vec2(127.1, 311.7));
return fract(sin(h)*43758.5453123);
}
float noise(in vec2 p) {
vec2 i = floor(p);
vec2 f = fract(p);
vec2 u = f*f*(3.0-2.0*f);
return -1.0+2.0*mix(mix(hash(i + vec2(0.0, 0.0)),
hash(i + vec2(1.0, 0.0)), u.x),
mix(hash(i + vec2(0.0, 1.0)),
hash(i + vec2(1.0, 1.0)), u.x), u.y);
}
// lighting
float diffuse(vec3 n, vec3 l, float p) {
return pow(dot(n, l) * 0.4 + 0.6, p);
}
float specular(vec3 n, vec3 l, vec3 e, float s) {
float nrm = (s + 8.0) / (PI * 8.0);
return pow(max(dot(reflect(e, n), l), 0.0), s) * nrm;
}
// sky
vec3 getSkyColor(vec3 e) {
e.y = max(e.y, 0.0);
return vec3(pow(1.0-e.y, 2.0), 1.0-e.y, 0.6+(1.0-e.y)*0.4);
}
// sea
float sea_octave(vec2 uv, float choppy) {
uv += noise(uv);
vec2 wv = 1.0-abs(sin(uv));
vec2 swv = abs(cos(uv));
wv = mix(wv, swv, wv);
return pow(1.0-pow(wv.x * wv.y, 0.65), choppy);
}
float map(vec3 p) {
float freq = SEA_FREQ;
float amp = SEA_HEIGHT;
float choppy = SEA_CHOPPY;
vec2 uv = p.xz; uv.x *= 0.75;
float d, h = 0.0;
for (int i = 0; i < ITER_GEOMETRY; i++) {
d = sea_octave((uv+SEA_TIME)*freq, choppy);
d += sea_octave((uv-SEA_TIME)*freq, choppy);
h += d * amp;
uv *= octave_m; freq *= 1.9; amp *= 0.22;
choppy = mix(choppy, 1.0, 0.2);
}
return p.y - h;
}
float map_detailed(vec3 p) {
float freq = SEA_FREQ;
float amp = SEA_HEIGHT;
float choppy = SEA_CHOPPY;
vec2 uv = p.xz; uv.x *= 0.75;
float d, h = 0.0;
for (int i = 0; i < ITER_FRAGMENT; i++) {
d = sea_octave((uv+SEA_TIME)*freq, choppy);
d += sea_octave((uv-SEA_TIME)*freq, choppy);
h += d * amp;
uv *= octave_m; freq *= 1.9; amp *= 0.22;
choppy = mix(choppy, 1.0, 0.2);
}
return p.y - h;
}
vec3 getSeaColor(vec3 p, vec3 n, vec3 l, vec3 eye, vec3 dist) {
float fresnel = clamp(1.0 - dot(n, -eye), 0.0, 1.0);
fresnel = pow(fresnel, 3.0) * 0.65;
vec3 reflected = getSkyColor(reflect(eye, n));
vec3 refracted = SEA_BASE + diffuse(n, l, 80.0) * SEA_WATER_COLOR * 0.12;
vec3 color = mix(refracted, reflected, fresnel);
float atten = max(1.0 - dot(dist, dist) * 0.001, 0.0);
color += SEA_WATER_COLOR * (p.y - SEA_HEIGHT) * 0.18 * atten;
color += vec3(specular(n, l, eye, 60.0));
return color;
}
// tracing
vec3 getNormal(vec3 p, float eps) {
vec3 n;
n.y = map_detailed(p);
n.x = map_detailed(vec3(p.x+eps, p.y, p.z)) - n.y;
n.z = map_detailed(vec3(p.x, p.y, p.z+eps)) - n.y;
n.y = eps;
return normalize(n);
}
float heightMapTracing(vec3 ori, vec3 dir, out vec3 p) {
float tm = 0.0;
float tx = 1000.0;
float hx = map(ori + dir * tx);
if (hx > 0.0) return tx;
float hm = map(ori + dir * tm);
float tmid = 0.0;
for (int i = 0; i < NUM_STEPS; i++) {
tmid = mix(tm, tx, hm/(hm-hx));
p = ori + dir * tmid;
float hmid = map(p);
if (hmid < 0.0) {
tx = tmid;
hx = hmid;
} else {
tm = tmid;
hm = hmid;
}
}
return tmid;
}
// main
void main(void) {
vec2 uv = gl_FragCoord.xy / uResolution.xy;
uv = uv * 2.0 - 1.0;
uv.x *= uResolution.x / uResolution.y;
float ttime = uTime * 0.3 + uResolution.x*0.01;
// ray
vec3 ang = vec3(sin(ttime*3.0)*0.1, sin(ttime)*0.2+0.3, ttime);
vec3 ori = vec3(0.0, 3.5, ttime*5.0);
vec3 dir = normalize(vec3(uv.xy, -2.0)); dir.z += length(uv) * 0.15;
dir = normalize(dir) * fromEuler(ang);
// tracing
vec3 p;
heightMapTracing(ori, dir, p);
vec3 dist = p - ori;
vec3 n = getNormal(p, dot(dist, dist) * EPSILON_NRM);
vec3 light = normalize(vec3(0.0, 1.0, 0.8));
// color
vec3 color = mix(
getSkyColor(dir),
getSeaColor(p, n, light, dir, dist),
pow(smoothstep(0.0, -0.05, dir.y), 0.3));
// post
FragColor = vec4(pow(color, vec3(0.75)), 1.0);
}
这里就是最牛逼的地方了,不过现在还没搞懂里边的逻辑运算,这些逻辑运算也是效果实现的精华,后面我们慢慢啃,必须要把这些逻辑运算搞清楚,我们才能说学习了这个大海效果的实现,否则我们只是使用别人的东西,别人的还是别人的。
Shadertoy网站上有太多太多精典的资源了,我们以后可以慢慢研究,也可以把它用在我们在实际工作中。