(markdown是用jupypter notebook生成)
mxnet为的提高IO效率, 不会直接读取图片文件, 而是先将图片列表和标签转换为RecordIO格式的二进制文件, 训练时就可以顺序读取数据, 大大提高了IO速率.
如何将图片列表与标签转换为RecordIO?
mxnet直接提供了mnist与cifar数据集的recordIO格式, 但为了熟悉这个过程, 我决定自己手动来一遍: 将mnist数据的原始二进制格式转换为recordIO格式.
如何将mnist ubyte文件转换成image 文件与lst?
从Yan Lecun网站上下载下来的原始数据由以下四部分组成
!ls ../dataset/mnist
t10k-images-idx3-ubyte train-images-idx3-ubyte
t10k-labels-idx1-ubyte train-labels-idx1-ubyte
怎样读取训练数据?
train images和labels两个文件分别训练数据的图片与标签, 数量为50k. t10k images 和labels则是测试数据, 10k.
先写脚本读取训练数据, 生成im2rec需要的图片文件与lst文件. train-images-idx3-ubyte文件的数据格式为:
# The labels values are 0 to 9.
# TRAINING SET IMAGE FILE (train-images-idx3-ubyte):
# [offset] [type] [value] [description]
# 0000 32 bit integer 0x00000803(2051) magic number
# 0004 32 bit integer 60000 number of images
# 0008 32 bit integer 28 number of rows
# 0012 32 bit integer 28 number of columns
# 0016 unsigned byte ?? pixel
# 0017 unsigned byte ?? pixel
# ........
# xxxx unsigned byte ?? pixel
import sys;
file_path = '../dataset/mnist/';
train_images_ubyte = file_path + 'train-images-idx3-ubyte';
train_labels_ubyte = file_path + 'train-labels-idx1-ubyte';
test_images_ubyte = file_path + 'test-images-idx3-ubyte';
test_labels_ubyte = file_path + 'test-labels-idx1-ubyte';
train_images = [];
train_labels = [];
def readInt(f, n = 4):
"""从mnist二进制文件中读取整数"""
return int(f.read(n).encode('hex'), 16);
def readImage(f):
"""从mnist二进制文件中读取图片"""
n = 28*28;
img = [0]*n;
for i in xrange(n):#这样一个一个字节地读取会很慢
img[i] = readInt(f, 1);
return img;
# 读取图片
with open(train_images_ubyte, 'r') as f:
magic = readInt(f);
num_img = readInt(f);
num_rows = readInt(f);
num_cols = readInt(f);
for i in range(num_img):
train_images.append(readImage(f));
train-labels-idx1-ubyte的数据格式如下:
# TRAINING SET LABEL FILE (train-labels-idx1-ubyte):
# [offset] [type] [value] [description]
# 0000 32 bit integer 0x00000801(2049) magic number (MSB first)
# 0004 32 bit integer 60000 number of items
# 0008 unsigned byte ?? label
# 0009 unsigned byte ?? label
# ........
# xxxx unsigned byte ?? label
#
def readLabel(f):
"""从mnist二进制文件中读取label"""
return readInt(f, 1);
# 读取标签
with open(train_labels_ubyte, 'r') as f:
magic = readInt(f);
num_items = readInt(f);
for i in xrange(num_items):
train_labels.append(readLabel(f));
可视化一下读取出来的数据
没什么实质性的功能, 就为了看看读出来的数据是怎样的.
import matplotlib.pyplot as plt;
import numpy as np;
%matplotlib inline
def list2img(arr):
return np.reshape(arr, (28, 28));
# 显示几张图片及其对应对手写数字;
num = 10
for i in range(num):
img = list2img(train_images[i]);
plt.subplot(1,num,i+1);
plt.imshow(img, cmap='gray')
plt.axis('off')
plt.title(train_labels[i])
# 画一张条形图看看数字的分布
plt.figure()
plt.hist(train_labels, range(11));
可以看出, 每个数字的分布还是挺均匀的.
导出图片, 并生成lst文件
#导出图片
import cv2
import os
file_dir = '/home/dengdan/dataset/mnist/raw/train/images/';
if not os.path.exists(file_dir) or not os.path.isdir(file_dir):
os.makedirs(file_dir);
file_name = 'mnist_train_{0}.jpg';
n = len(train_images)
for i in xrange(n):
img = list2img(train_images[i]);
#cv2.imwrite(file_dir + file_name.format(i), img) #需要生成图片时将注释去掉
lst 文件用于将图片文件与它的label对应起来. 每一行为一条记录, 格式为:
integer_image_index \t label_index \t path_to_image
895099 464 n04467665_17283.JPEG
10025081 412 ILSVRC2010_val_00025082.JPEG
74181 789 n01915811_2739.JPEG
10035553 859 ILSVRC2010_val_00035554.JPEG
10048727 929 ILSVRC2010_val_00048728.JPEG
94028 924 n01980166_4956.JPEG
1080682 650 n11807979_571.JPEG
972457 633 n07723039_1627.JPEG
7534 11 n01630670_4486.JPEG
1191261 249 n12407079_5106.JPEG
# 生成lst 文件
def rec(idx, label):
"""生成第idx张图片的记录"""
name = file_name.format(idx);
return '{0} \t {1} \t {2}'.format(idx, label, name)
lst_path = '/home/dengdan/dataset/mnist/mxnet/'
if not os.path.exists(lst_path) or not os.path.isdir(lst_path):
os.makedirs(lst_path);
lst = lst_path + 'train.lst';
with open(lst, 'w') as f:
for i in xrange(len(train_labels)):
record = rec(i, train_labels[i]);
f.write(record + '\n');
现在, 图片也有了, lst文件也有了, 可以利用im2rec工具生成recordio文件了
! ~/github/mxnet/bin/im2rec ~/dataset/mnist/mxnet/train.lst ~/dataset/mnist/raw/train/images/ ~/dataset/mnist/mxnet/train.bin
[16:28:31] tools/im2rec.cc:96: Keep origin image size
[16:28:31] tools/im2rec.cc:107: Encoding is .jpg
[16:28:31] tools/im2rec.cc:153: Write to output: /home/dengdan/dataset/mnist/mxnet/train.bin
...
[16:28:35] tools/im2rec.cc:251: 55000 images processed, 4.04441 sec elapsed
[16:28:35] tools/im2rec.cc:251: 56000 images processed, 4.11869 sec elapsed
[16:28:35] tools/im2rec.cc:251: 57000 images processed, 4.1915 sec elapsed
[16:28:36] tools/im2rec.cc:251: 58000 images processed, 4.26273 sec elapsed
[16:28:36] tools/im2rec.cc:251: 59000 images processed, 4.3346 sec elapsed
[16:28:36] tools/im2rec.cc:251: 60000 images processed, 4.40678 sec elapsed
[16:28:36] tools/im2rec.cc:254: Total: 60000 images processed, 4.40682 sec elapsed
github: https://github.com/dengdan/deep-learning-with-mxnet/tree/master/io/mnist2rec.ipynb