无穷小微积分与模型论

        学习鲁宾逊无穷小理论必须了解数理逻辑模型论的基础知识。

袁萌   5月21日
附:

        无穷小微积分基础的前言简介

        无穷小微积分不是空穴来风,讲科幻故事。无穷小微积分的理论基础很深,需要使用数理逻辑模型论工具(超幂)来构造。在无穷小微积分基础的前言中,对此有所阐述。老翁希望(数理逻辑)圈外人士,对此不要说三道四,指手画脚。
J.Keisler在该书的前言(Preface )中明确表示:

        subject of ininitesimal analysis found in theresearch literature. To gobeyond infinitesimal calculus one should at least be familiar with some basicnotions from logic and model theory(模型论). Chapter 15introduces the concept of anonstandard universe, explains the use ofmathematical logic, superstructures,and internal and external sets, usesultrapowers(超幂) to build anonstandarduniverse, and presents uniqueness theorems forthe hyperreal number systems andnonstandard universes.

        The simple set of axioms for thehyperrealnumber system given here (and in ElementaryCalculus) make it possibleto present infinitesimal calculus at the college freshman level, avoidingconcepts from mathematicallogic. It is shown in Chapter 15 that these axiomsareequivalent to Robinson’s approach.

        For additional background in logic andmodeltheory, the reader can consult the book [CK 1990]. Section4.4 of that bookgives further results on nonstandard universes. Additional background ininfinitesimal analysis can be found in the book [Goldblatt 1991].

        I thank my late colleague Jon Barwise,andKeith Stroyan of the University of Iowa, for valuable advicein preparing theFirst Edition of this monograph. In the thirty years between the first and thepresent edition, I have ben geted from equally valuable and much appreciatedadvice from friends and colleagues too numerous to recount here.

袁萌  2017年2月19日
 
 

你可能感兴趣的:(原创,综合)